Generalized symmetric polynomials and an approximate de Finetti representation

被引:5
|
作者
Bobkov, SG [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
symmetric polynomials; quadratics induction; de Finetti representation;
D O I
10.1007/s10959-005-3509-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For probability measures on product spaces which are symmetric under permutations of coordinates, we studs the rate of approximation by mixtures of product measures.
引用
收藏
页码:399 / 412
页数:14
相关论文
共 50 条
  • [41] On the representation of approximate subdifferentials for a class of generalized convex functions
    Carrasco-Olivera, D
    Flores-Bazán, F
    SET-VALUED ANALYSIS, 2005, 13 (02): : 151 - 166
  • [42] On the Representation of Approximate Subdifferentials for a Class of Generalized Convex Functions
    Dante Carrasco-Olivera
    Fabián Flores-Bazán
    Set-Valued Analysis, 2005, 13 : 151 - 166
  • [43] Some symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials
    Khan, Waseem A.
    Haroon, Hiba
    SPRINGERPLUS, 2016, 5
  • [44] Uncertainty and the de Finetti tables
    Baratgin, Jean
    Over, David E.
    Politzer, Guy
    THINKING & REASONING, 2013, 19 (3-4) : 308 - 328
  • [45] de Finetti reductions for correlations
    Arnon-Friedman, Rotem
    Renner, Renato
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (05)
  • [46] Bruno de Finetti and Imprecision
    Vicig, Paolo
    Seidenfeld, Teddy
    ISIPTA '11 - PROCEEDINGS OF THE SEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, 2011, : 7 - 16
  • [47] A de Casteljau algorithm for generalized Bernstein polynomials
    Phillips, GM
    BIT, 1997, 37 (01): : 232 - 236
  • [48] A de Casteljau algorithm for generalized Bernstein polynomials
    George M. Phillips
    BIT Numerical Mathematics, 1997, 37 : 232 - 236
  • [49] DE FINETTI ON RISK AVERSION
    Kadane, Joseph B.
    Bellone, Gaia
    ECONOMICS AND PHILOSOPHY, 2009, 25 (02) : 153 - 159
  • [50] The de Finetti structure behind some norm-symmetric multivariate densities with exponential decay
    Mai, Jan-Frederik
    DEPENDENCE MODELING, 2020, 8 (01): : 210 - 220