Generalized symmetric polynomials and an approximate de Finetti representation

被引:5
|
作者
Bobkov, SG [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
symmetric polynomials; quadratics induction; de Finetti representation;
D O I
10.1007/s10959-005-3509-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For probability measures on product spaces which are symmetric under permutations of coordinates, we studs the rate of approximation by mixtures of product measures.
引用
收藏
页码:399 / 412
页数:14
相关论文
共 50 条
  • [31] REPRESENTATION OF GENERALIZED BIAXIALLY SYMMETRIC-POTENTIALS
    BERGLEZ, P
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (04): : T142 - T144
  • [32] Lambek Functional Representation of Generalized Symmetric Semirings
    E. M. Vechtomov
    V. V. Chermnykh
    Russian Mathematics, 2023, 67 : 23 - 31
  • [33] Lambek Functional Representation of Generalized Symmetric Semirings
    Vechtomov, E. M.
    Chermnykh, V. V.
    RUSSIAN MATHEMATICS, 2023, 67 (02) : 23 - 31
  • [34] A fermionic de Finetti theorem
    Krumnow, Christian
    Zimboras, Zoltan
    Eisert, Jens
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (12)
  • [35] Coherence of de Finetti coherence
    Daniele Mundici
    Synthese, 2017, 194 : 4055 - 4063
  • [36] Coherence of de Finetti coherence
    Mundici, Daniele
    SYNTHESE, 2017, 194 (10) : 4055 - 4063
  • [37] Computable de Finetti measures
    Freer, Cameron E.
    Roy, Daniel M.
    ANNALS OF PURE AND APPLIED LOGIC, 2012, 163 (05) : 530 - 546
  • [38] De Finetti Coherence and Beyond
    Vantaggi, Barbara
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS (ISIPTA '15), 2015, : 23 - 23
  • [39] ASYMPTOTICS OF SYMMETRIC POLYNOMIALS WITH APPLICATIONS TO STATISTICAL MECHANICS AND REPRESENTATION THEORY
    Gorin, Vadim
    Panova, Greta
    ANNALS OF PROBABILITY, 2015, 43 (06): : 3052 - 3132
  • [40] De Finetti meets Ellsberg
    Epstein, Larry G.
    Seo, Kyoungwon
    RESEARCH IN ECONOMICS, 2014, 68 (01) : 11 - 26