DE FINETTI ON RISK AVERSION

被引:0
|
作者
Kadane, Joseph B. [1 ]
Bellone, Gaia [1 ]
机构
[1] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA
关键词
D O I
10.1017/S0266267109990022
中图分类号
F [经济];
学科分类号
02 ;
摘要
According to Mark Rubinstein (2006) In 1952, anticipating Kenneth Arrow and John Pratt by over a decade, lie [de Finetti] formulated the notion of absolute risk aversion, used it in connection with risk premia for small bets, and discussed the special case of constant absolute risk aversion.' The purpose of this note is to ascertain the extent to which this is true, and at the same time, to correct certain minor errors that appear in de Finetti's work.
引用
收藏
页码:153 / 159
页数:7
相关论文
共 50 条
  • [1] The de Finetti transform
    Press, SJ
    [J]. MAXIMUM ENTROPY AND BAYESIAN METHODS, 1996, 79 : 101 - 108
  • [2] De Finetti on uncertainty
    Feduzi, Alberto
    Runde, Jochen
    Zappia, Carlo
    [J]. CAMBRIDGE JOURNAL OF ECONOMICS, 2014, 38 (01) : 1 - 21
  • [3] EXTENSION OF DE FINETTI THEOREM
    PITMAN, JW
    [J]. ADVANCES IN APPLIED PROBABILITY, 1978, 10 (02) : 268 - 270
  • [4] Coherence of de Finetti coherence
    Daniele Mundici
    [J]. Synthese, 2017, 194 : 4055 - 4063
  • [5] A fermionic de Finetti theorem
    Krumnow, Christian
    Zimboras, Zoltan
    Eisert, Jens
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (12)
  • [6] Computable de Finetti measures
    Freer, Cameron E.
    Roy, Daniel M.
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2012, 163 (05) : 530 - 546
  • [7] De Finetti Coherence and Beyond
    Vantaggi, Barbara
    [J]. PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS (ISIPTA '15), 2015, : 23 - 23
  • [8] Coherence of de Finetti coherence
    Mundici, Daniele
    [J]. SYNTHESE, 2017, 194 (10) : 4055 - 4063
  • [9] De Finetti meets Ellsberg
    Epstein, Larry G.
    Seo, Kyoungwon
    [J]. RESEARCH IN ECONOMICS, 2014, 68 (01) : 11 - 26
  • [10] Uncertainty and the de Finetti tables
    Baratgin, Jean
    Over, David E.
    Politzer, Guy
    [J]. THINKING & REASONING, 2013, 19 (3-4) : 308 - 328