Stochastic gradient identification of Wiener system with maximum mutual information criterion

被引:15
|
作者
Chen, B. [1 ]
Zhu, Y. [2 ]
Hu, J. [2 ]
Principe, J. C. [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[2] Tsinghua Univ, Inst Mfg Engn, Dept Precis Instruments & Mechanol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
ALGORITHM;
D O I
10.1049/iet-spr.2010.0171
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study presents an information-theoretic approach for adaptive identification of an unknown Wiener system. A two-criterion identification scheme is proposed, in which the adaptive system comprises a linear finite-impulse response filter trained by maximum mutual information (MaxMI) criterion and a polynomial non-linearity learned by traditional mean square error criterion. The authors show that under certain conditions, the optimum solution matches the true system exactly. Further, the authors develop a stochastic gradient-based algorithm, that is, stochastic mutual information gradient-normalised least mean square algorithm, to implement the proposed identification scheme. Monte-Carlo simulation results demonstrate the noticeable performance improvement of this new algorithm in comparison with some other algorithms.
引用
收藏
页码:589 / 597
页数:9
相关论文
共 50 条
  • [1] Synthesis of stochastic algorithms for image registration by the criterion of maximum mutual information
    Tashlinskii, A. G.
    Safina, G. L.
    Ibragimov, R. M.
    [J]. COMPUTER OPTICS, 2024, 48 (01) : 109 - 117
  • [2] How to train a discriminative front end with stochastic gradient descent and maximum mutual information
    Droppo, J
    Mahajan, M
    Gunawardana, A
    Acero, A
    [J]. 2005 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), 2005, : 41 - 46
  • [3] Adaptive filtering under maximum mutual information criterion
    Chen, Badong
    Hu, Jinchun
    Li, Hongbo
    Sun, Zengqi
    [J]. NEUROCOMPUTING, 2008, 71 (16-18) : 3680 - 3684
  • [4] Synthesis and Optimization of a Stochastic Algorithm for Image Registration Using Shannon's Maximum Mutual Information Criterion
    Tashlinskii, A. G.
    Ibragimov, R. M.
    Safina, G. L.
    [J]. OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2024, 60 (02) : 181 - 189
  • [5] Gradient of the Mutual Information in Stochastic Systems: A Functional Approach
    Sedighizad, Mahboobeh
    Seyfe, Babak
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (10) : 1521 - 1525
  • [6] Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems
    Celka, P
    Bershad, NJ
    Vesin, JM
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (06) : 1820 - 1825
  • [7] Stochastic gradient identification of polynomial Wiener systems: Analysis and application
    Celka, P
    Bershad, NJ
    Vesin, JM
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (02) : 301 - 313
  • [8] Adaptive motion estimation schemes using maximum mutual information criterion
    Zhao, Ling
    Wu, Dapeng
    Erdogmus, Deniz
    Fang, Yuguang
    He, Zhihai
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2007, 7 (02): : 205 - 215
  • [9] Stochastic mutual information gradient estimation for dimensionality reduction networks
    Oezdenizci, Ozan
    Erdogmus, Deniz
    [J]. INFORMATION SCIENCES, 2021, 570 : 298 - 305
  • [10] ON STOCHASTIC GRADIENT DESCENT AND QUADRATIC MUTUAL INFORMATION FOR IMAGE REGISTRATION
    Singh, Abhishek
    Ahuja, Narendra
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 1326 - 1330