Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems

被引:6
|
作者
Celka, P [1 ]
Bershad, NJ
Vesin, JM
机构
[1] Univ Queensland, Signal Proc Res Ctr, Brisbane, Qld, Australia
[2] Univ Calif Irvine, Dept Elect Commun Engn, Irvine, CA 92717 USA
[3] Swiss Fed Inst Technol, Dept Elect Engn, Signal Proc Lab, CH-1015 Lausanne, Switzerland
关键词
adaptive stochastic gradient; nonlinear system identification; polynomial Wiener models;
D O I
10.1109/78.845945
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This correspondence presents analytical results and Monte Carlo simulations for the fluctuation behavior of a stochastic gradient adaptive identification scheme. This scheme identifies a polynomial Wiener system (linear FIR filter followed by a static polynomial nonlinearity) for noisy output observations. The analysis includes 1) bounds and a recursion for the misadjustment matrix and 2) algorithm mean square stability regions. A diagonal step-size matrix for the adaptive coefficients is introduced to speed up convergence. The theoretical predictions of the fluctuation analysis are supported bg Monte Carlo simulations.
引用
收藏
页码:1820 / 1825
页数:6
相关论文
共 50 条
  • [1] Stochastic gradient identification of polynomial Wiener systems: Analysis and application
    Celka, P
    Bershad, NJ
    Vesin, JM
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (02) : 301 - 313
  • [2] Analysis of stochastic gradient identification of Wiener-Hammerstein systems for nonlinearities with hermite polynomial expansions
    Bershad, NJ
    Celka, P
    McLaughlin, S
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (05) : 1060 - 1072
  • [3] Analysis of stochastic gradient tracking of time-varying polynomial Wiener systems
    Bershad, NJ
    Celka, P
    Vesin, JM
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (06) : 1676 - 1686
  • [4] Analysis of stochastic gradient identification of polynomial nonlinear systems with memory
    Celka, P.
    Bershad, N.J.
    Vesin, J.M.
    [J]. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1999, 3 : 1293 - 1296
  • [5] Analysis of stochastic gradient identification of polynomial nonlinear systems with memory
    Celka, P
    Bershad, NJ
    Vesin, JM
    [J]. ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 1293 - 1296
  • [6] Stochastic analysis of adaptive gradient identification of Wiener-Hammerstein systems for Gaussian inputs
    Bershad, NJ
    Bouchired, S
    Castanie, F
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (02) : 557 - 560
  • [7] On the identification of Wiener systems with polynomial nonlinearity
    Bottegal, Giulio
    Castro-Garcia, Ricardo
    Suykens, Johan A. K.
    [J]. 2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [8] Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems
    Wang, Dongqing
    Ding, Feng
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) : 3157 - 3164
  • [9] Stochastic gradient with changing forgetting factor-based parameter identification for Wiener systems
    Li, Junpeng
    Hua, Changchun
    Tang, Yinggan
    Guan, Xinping
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 33 : 40 - 45
  • [10] Stochastic control of discrete systems: A separation principle for Wiener and polynomial systems
    Grimble, MJ
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (11) : 2125 - 2130