Stochastic gradient identification of polynomial Wiener systems: Analysis and application

被引:38
|
作者
Celka, P [1 ]
Bershad, NJ
Vesin, JM
机构
[1] Queensland Univ Technol, Signal Proc Res Ctr, Brisbane, Qld, Australia
[2] Univ Calif Irvine, Dept Elect & Comp Engn, Irvine, CA 92717 USA
[3] Swiss Fed Inst Technol, Signal Proc Lab, Dept Elect Engn, CH-1015 Lausanne, Switzerland
关键词
adaptive stochastic gradient; chaos; denoising; identification; nonlinear optical feedback system; Wiener nonlinear systems;
D O I
10.1109/78.902112
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents analytical, numerical, and experimental results for a stochastic gradient adaptive scheme th:at identifies a polynomial-type nonlinear system with memory for noisy output observations, The analysis includes the computation of the stationary points, the mean square error surface, and the stability regions of the algorithm for Gaussian data, Convergence of the mean is studied using L-2 and Euclidian norms, Monte Cal lo simulations confirm the theoretical predictions that show a small sensitivity to the observation noise. An application is presented for the identification of a nonlinear time-delayed feedback system.
引用
收藏
页码:301 / 313
页数:13
相关论文
共 50 条