Stochastic control of discrete systems: A separation principle for Wiener and polynomial systems

被引:0
|
作者
Grimble, MJ [1 ]
机构
[1] Univ Strathclyde, Ind Control Ctr, Glasgow G1 1QE, Lanark, Scotland
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new separation principle is established for systems represented in discrete frequency-domain Wiener or polynomial forms. The LQG or H-2 optimal controller can be realized using an observer based structure estimating noise free output variables that are fedback through a dynamic gain control block. The frequency-domain solution can be related to standard state-space Kalman filtering results, but it has a rather different structure. Surprising there are also two separation principle theorems depending upon the order in which the ideal output optimal control and the optimal observer problems are solved.
引用
收藏
页码:790 / 795
页数:6
相关论文
共 50 条
  • [1] Stochastic control of discrete systems: A separation principle for Wiener and polynomial systems
    Grimble, MJ
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (11) : 2125 - 2130
  • [2] Discrete-time optimal control for stochastic nonlinear polynomial systems
    Hernandez-Gonzalez, M.
    Basin, M. V.
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2014, 43 (3-4) : 359 - 371
  • [3] Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems
    Celka, P
    Bershad, NJ
    Vesin, JM
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (06) : 1820 - 1825
  • [4] Stochastic gradient identification of polynomial Wiener systems: Analysis and application
    Celka, P
    Bershad, NJ
    Vesin, JM
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (02) : 301 - 313
  • [5] Separation principle for multivariable control: A continuous-time polynomial systems approach
    Grimble, MJ
    [J]. IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1999, 146 (05): : 457 - 469
  • [6] Discrete polynomial fuzzy systems control
    Chen, Ying-Jen
    Tanaka, Motoyasu
    Tanaka, Kazuo
    Ohtake, Hiroshi
    Wang, Hua O.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2014, 8 (04): : 288 - 296
  • [7] MAXIMUM PRINCIPLE FOR DISCRETE CONTROL SYSTEMS
    PROPOI, AI
    [J]. AUTOMATION AND REMOTE CONTROL, 1965, 26 (07) : 1167 - &
  • [8] On stochastic sensitivity control in discrete systems
    I. A. Bashkirtseva
    L. B. Ryashko
    [J]. Automation and Remote Control, 2010, 71 : 1833 - 1848
  • [9] On stochastic sensitivity control in discrete systems
    Bashkirtseva, I. A.
    Ryashko, L. B.
    [J]. AUTOMATION AND REMOTE CONTROL, 2010, 71 (09) : 1833 - 1848
  • [10] A maximum principle for optimal control of discrete-time stochastic systems with Markov jump
    Lin, Xiang-Yun
    Wang, Xin-Rui
    Zhang, Wei-Hai
    [J]. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2024, 41 (05): : 895 - 904