Stochastic gradient identification of Wiener system with maximum mutual information criterion

被引:15
|
作者
Chen, B. [1 ]
Zhu, Y. [2 ]
Hu, J. [2 ]
Principe, J. C. [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[2] Tsinghua Univ, Inst Mfg Engn, Dept Precis Instruments & Mechanol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
ALGORITHM;
D O I
10.1049/iet-spr.2010.0171
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study presents an information-theoretic approach for adaptive identification of an unknown Wiener system. A two-criterion identification scheme is proposed, in which the adaptive system comprises a linear finite-impulse response filter trained by maximum mutual information (MaxMI) criterion and a polynomial non-linearity learned by traditional mean square error criterion. The authors show that under certain conditions, the optimum solution matches the true system exactly. Further, the authors develop a stochastic gradient-based algorithm, that is, stochastic mutual information gradient-normalised least mean square algorithm, to implement the proposed identification scheme. Monte-Carlo simulation results demonstrate the noticeable performance improvement of this new algorithm in comparison with some other algorithms.
引用
收藏
页码:589 / 597
页数:9
相关论文
共 50 条
  • [21] Robustness analysis of a gradient identification method for a nonlinear wiener system
    Aschbacher, Ernst
    Rupp, Markus
    [J]. 2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2, 2005, : 90 - 94
  • [22] Maximum Likelihood and maximum mutual information training in gender and age recognition system
    Hubeika, Valiantsina
    Szoeke, Igor
    Burget, Lukas
    Cernocky, Jan
    [J]. TEXT, SPEECH AND DIALOGUE, PROCEEDINGS, 2007, 4629 : 496 - 501
  • [23] Using The Maximum Mutual Information Criterion To Textural Feature Selection For Satellite Image Classification
    Kerroum, Mounir Ait
    Hammouch, Ahmed
    Aboutajdine, Driss
    Bellaachia, Abdelghani
    [J]. 2008 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, VOLS 1-3, 2008, : 584 - +
  • [24] Discriminative training of GMM based on Maximum Mutual Information for language identification
    Qu Dan
    Wang Bingxi
    Yan Honggang
    Dai Guannan
    [J]. WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 1576 - +
  • [25] Maximum independence and mutual information
    Meo, R
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (01) : 318 - 324
  • [26] Maximum MIMO system mutual information with antenna selection and interference
    Blum, RS
    [J]. EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2004, 2004 (05) : 676 - 684
  • [27] Maximum MIMO System Mutual Information with Antenna Selection and Interference
    Rick S Blum
    [J]. EURASIP Journal on Advances in Signal Processing, 2004
  • [28] Stochastic gradient with changing forgetting factor-based parameter identification for Wiener systems
    Li, Junpeng
    Hua, Changchun
    Tang, Yinggan
    Guan, Xinping
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 33 : 40 - 45
  • [29] Stochastic analysis of adaptive gradient identification of Wiener-Hammerstein systems for Gaussian inputs
    Bershad, NJ
    Bouchired, S
    Castanie, F
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (02) : 557 - 560
  • [30] Maximum Likelihood identification of Wiener-Hammerstein system with process noise
    Giordano, Giuseppe
    Sjoberg, Jonas
    [J]. IFAC PAPERSONLINE, 2018, 51 (15): : 401 - 406