Stochastic gradient identification of Wiener system with maximum mutual information criterion

被引:15
|
作者
Chen, B. [1 ]
Zhu, Y. [2 ]
Hu, J. [2 ]
Principe, J. C. [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[2] Tsinghua Univ, Inst Mfg Engn, Dept Precis Instruments & Mechanol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
ALGORITHM;
D O I
10.1049/iet-spr.2010.0171
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study presents an information-theoretic approach for adaptive identification of an unknown Wiener system. A two-criterion identification scheme is proposed, in which the adaptive system comprises a linear finite-impulse response filter trained by maximum mutual information (MaxMI) criterion and a polynomial non-linearity learned by traditional mean square error criterion. The authors show that under certain conditions, the optimum solution matches the true system exactly. Further, the authors develop a stochastic gradient-based algorithm, that is, stochastic mutual information gradient-normalised least mean square algorithm, to implement the proposed identification scheme. Monte-Carlo simulation results demonstrate the noticeable performance improvement of this new algorithm in comparison with some other algorithms.
引用
收藏
页码:589 / 597
页数:9
相关论文
共 50 条
  • [31] Maximum likelihood identification of Wiener models
    Hagenblad, Anna
    Ljung, Lennart
    Wills, Adrian
    [J]. AUTOMATICA, 2008, 44 (11) : 2697 - 2705
  • [32] FREQUENCIES DESIGN METHOD OF MULTI-FREQUENCY SAR BASED ON MAXIMUM MUTUAL INFORMATION CRITERION
    Zhou, Zihan
    Xu, Huaping
    Zhang, Jiawei
    Li, Chunsheng
    Li, Wei
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7707 - 7710
  • [33] MAXIMUM-LIKELIHOOD IDENTIFICATION OF STOCHASTIC WIENER-HAMMERSTEIN-TYPE NONLINEAR-SYSTEMS
    CHEN, CH
    FASSOIS, SD
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1992, 6 (02) : 135 - 153
  • [34] Combining evolutionary and stochastic gradient techniques for system identification
    Theofilatos, Konstantinos
    Beligiannis, Grigorios
    Likothanassis, Spiridon
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 227 (01) : 147 - 160
  • [35] Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient
    Cole-Rhodes, AA
    Johnson, KL
    LeMoigne, J
    Zavorin, I
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (12) : 1495 - 1511
  • [36] Stochastic Gradient Based Iterative Identification Algorithm for a Class of Dual-rate Wiener Systems
    Leng, Jing
    Li, Junpeng
    Hua, Changchun
    Guan, Xinping
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 2190 - 2197
  • [37] Analysis of stochastic gradient identification of Wiener-Hammerstein systems for nonlinearities with hermite polynomial expansions
    Bershad, NJ
    Celka, P
    McLaughlin, S
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (05) : 1060 - 1072
  • [38] IDENTIFICATION AND CLASSIFICATION OF CONSONANTS AND VOWELS OF AN ENGLISH TEXT USING A CRITERION FOR MAXIMUM INFORMATION
    TRETIAKO.A
    [J]. LINGUISTICS, 1973, (95) : 71 - 77
  • [39] On maximum mutual information without coding
    Osaki, M
    Ban, M
    Hirota, O
    [J]. QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 2, 2000, : 17 - 26
  • [40] Maximum mutual information regularized classification
    Wang, Jim Jing-Yan
    Wang, Yi
    Zhao, Shiguang
    Gao, Xin
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2015, 37 : 1 - 8