On the Chlodowsky variant of Jakimovski-Leviatan-Paltanea Operators

被引:0
|
作者
Dalmanoglu, Ozge [1 ]
Orkcu, Mediha [2 ]
机构
[1] Baskent Univ, Fac Educ, Dept Math & Sci Educ, TR-06790 Ankara, Turkey
[2] Gazi Univ, Fac Sci, Dept Math, TR-06500 Ankara, Turkey
来源
GAZI UNIVERSITY JOURNAL OF SCIENCE | 2021年 / 34卷 / 03期
关键词
Paltanea operators; Chlodowsky operators; Voronovskaya theorem; Convergence rate; Weighted modulus of continuity; APPROXIMATION;
D O I
10.35378/gujs.794810
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present paper, our purpose is to generalize the Jakimovski-Leviatan-Paltanea operators in the sense of Chlodowsky. After introducing the new operators we first obtain the moments of these operators in order to establish the convergency properties with the help of Korovkin's theorem. After that, we give the local approximation result and the Voronovskaya type theorem. We also examine the convergence properties of the operators in the weighted space of functions. Lastly we determine the rate of convergence of the operators with the aid of the weighted modulus of continuity.
引用
收藏
页码:821 / 833
页数:13
相关论文
共 50 条
  • [1] APPROXIMATION BY STANCU TYPE JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS
    Kumar, Alok
    Vandana
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 936 - 948
  • [2] APPROXIMATION BY BEZIER VARIANT OF JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS INVOLVING SHEFFER POLYNOMIALS
    Agrawal, P. N.
    Kumar, Ajay
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 1522 - 1536
  • [3] Approximation by Jakimovski-Leviatan-Paltanea operators involving Sheffer polynomials
    Mursaleen, M.
    AL-Abeid, A. A. H.
    Ansari, Khursheed J.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1251 - 1265
  • [4] On Jakimovski-Leviatan-Paltanea approximating operators involving Boas-Buck-type polynomials
    Ansari, Khursheed J.
    Salman, M. A.
    Mursaleen, M.
    Al-Abied, A. H. H.
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2020, 32 (07) : 3018 - 3025
  • [5] Degree of approximation by Chlodowsky variant of Jakimovski–Leviatan–Durrmeyer type operators
    Trapti Neer
    Ana Maria Acu
    P. N. Agrawal
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3445 - 3459
  • [6] Degree of approximation by Chlodowsky variant of Jakimovski-Leviatan-Durrmeyer type operators
    Neer, Trapti
    Acu, Ana Maria
    Agrawal, P. N.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3445 - 3459
  • [7] Approximation by Chlodowsky type Jakimovski-Leviatan operators
    Buyukyazici, Ibrahim
    Tanberkan, Hande
    Serenbay, Sevilay Kirci
    Atakut, Cigdem
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 153 - 163
  • [8] APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS
    Dalmanoglu, Ozge
    Serenbay, Sevilay Kirci
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2016, 65 (01): : 157 - 169
  • [9] Approximation by a Generalization of the Jakimovski-Leviatan Operators
    Ari, Didem Aydin
    Serenbay, Sevilay Kirci
    [J]. FILOMAT, 2019, 33 (08) : 2345 - 2353
  • [10] STANCU VARIANT OF JAKIMOVSKI-LEVIATAN-DURRMEYER OPERATORS INVOLVING BRENKE TYPE POLYNOMIALS
    Agrawal, Purshottam Narain
    Singh, Sompal
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024, 7 (01): : 1 - 19