STANCU VARIANT OF JAKIMOVSKI-LEVIATAN-DURRMEYER OPERATORS INVOLVING BRENKE TYPE POLYNOMIALS

被引:0
|
作者
Agrawal, Purshottam Narain [1 ]
Singh, Sompal [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
来源
关键词
Szasz operators; Brenke type polynomials; Jakimovski-Leviatan-Durrmeyer type operators; rate of convergence; Peetre's K-functional; weighted approximation; statistical approximation; STATISTICAL APPROXIMATION; CONVERGENCE; THEOREMS; ERROR;
D O I
10.3934/mfc.2022004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Karaisa [29] presented Jakimovski- Leviatan-Durrmeyer type operators by means of Appell polynomials. In a similar manner, Wani et al. [43] proposed a sequence of Jakimovski-Leviatan-Durrmeyer type operators involving Brenke type polynomials which include Appell polynomials and Hermite polynomials. We note that the definitions of the operators given in both these papers are not correct. In the present article, we introduce a Stancu variant of the operators considered in [43] after correcting their definition. The definition of the operator proposed in [29] may be similarly corrected. We establish the Korovkin type approximation theorem and the rate of convergence by means of the usual modulus of continuity, Peetre's K-functional and the class of Lipschitz type functions for our operators. Next, we discuss the Voronovskaja and Gru spacing diaeresis ss Voronovskaja type asymptotic theorems. Finally, we study the convergence of these operators in a weighted space and the Korovkin type weighted statistical approximation theorem.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] Degree of approximation by Chlodowsky variant of Jakimovski-Leviatan-Durrmeyer type operators
    Neer, Trapti
    Acu, Ana Maria
    Agrawal, P. N.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3445 - 3459
  • [2] Jakimovski-Leviatan operators of Durrmeyer type involving Appell polynomials
    Gupta, Pooja
    Agrawal, Purshottam Narain
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) : 1457 - 1470
  • [3] Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer Type Operators
    Mursaleen, M.
    Rahman, Shagufta
    Ansari, Khursheed J.
    FILOMAT, 2019, 33 (06) : 1517 - 1530
  • [4] Approximation by Jakimovski–Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Khursheed J. Ansari
    M. Mursaleen
    Shagufta Rahman
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1007 - 1024
  • [5] On the Approximation by Stancu-Type Bivariate Jakimovski–Leviatan–Durrmeyer Operators
    Karateke S.
    Zontul M.
    Mishra V.N.
    Gairola A.R.
    La Matematica, 2024, 3 (1): : 211 - 233
  • [6] Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Ansari, Khursheed J.
    Mursaleen, M.
    Rahman, Shagufta
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1007 - 1024
  • [7] Stancu Type Generalization of Szasz-Durrmeyer Operators Involving Brenke-Type Polynomials
    Aktas, Rabia
    Soylemez, Dilek
    Tasdelen, Fatma
    FILOMAT, 2019, 33 (03) : 855 - 868
  • [8] Certain approximation properties of Brenke polynomials using Jakimovski–Leviatan operators
    Shahid Ahmad Wani
    M. Mursaleen
    Kottakkaran Sooppy Nisar
    Journal of Inequalities and Applications, 2021
  • [9] Degree of approximation by Chlodowsky variant of Jakimovski–Leviatan–Durrmeyer type operators
    Trapti Neer
    Ana Maria Acu
    P. N. Agrawal
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3445 - 3459
  • [10] Certain approximation properties of Brenke polynomials using Jakimovski-Leviatan operators
    Wani, Shahid Ahmad
    Mursaleen, M.
    Nisar, Kottakkaran Sooppy
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)