Degree of approximation by Chlodowsky variant of Jakimovski–Leviatan–Durrmeyer type operators

被引:0
|
作者
Trapti Neer
Ana Maria Acu
P. N. Agrawal
机构
[1] The NorthCap University,Department of Applied Sciences
[2] Lucian Blaga University of Sibiu,Department of Mathematics and Informatics
[3] Indian Institute of Technology Roorkee,Department of Mathematics
关键词
Jakimovsky–Leviatan operators; Chlodowsky variant; Ditzian–Totik modulus of smoothness; Weighted modulus of continuity; 41A25; 40A35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, some approximation properties of Chlodowsky variant of the Durrmeyer-type Jakimovsky–Leviatan operators are studied. Also, a Voronovskaja-type theorem is proved. In order to give a better error estimation, in the last section is introduced a modification of these operators. The teoretical results are illustrated by numerical examples.
引用
收藏
页码:3445 / 3459
页数:14
相关论文
共 50 条
  • [1] Degree of approximation by Chlodowsky variant of Jakimovski-Leviatan-Durrmeyer type operators
    Neer, Trapti
    Acu, Ana Maria
    Agrawal, P. N.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3445 - 3459
  • [2] Approximation by Chlodowsky type Jakimovski-Leviatan operators
    Buyukyazici, Ibrahim
    Tanberkan, Hande
    Serenbay, Sevilay Kirci
    Atakut, Cigdem
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 153 - 163
  • [3] APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS
    Dalmanoglu, Ozge
    Serenbay, Sevilay Kirci
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2016, 65 (01): : 157 - 169
  • [4] On the Chlodowsky variant of Jakimovski-Leviatan-Paltanea Operators
    Dalmanoglu, Ozge
    Orkcu, Mediha
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2021, 34 (03): : 821 - 833
  • [5] Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer Type Operators
    Mursaleen, M.
    Rahman, Shagufta
    Ansari, Khursheed J.
    FILOMAT, 2019, 33 (06) : 1517 - 1530
  • [6] On the Approximation by Stancu-Type Bivariate Jakimovski–Leviatan–Durrmeyer Operators
    Karateke S.
    Zontul M.
    Mishra V.N.
    Gairola A.R.
    La Matematica, 2024, 3 (1): : 211 - 233
  • [7] Approximation by Jakimovski–Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Khursheed J. Ansari
    M. Mursaleen
    Shagufta Rahman
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1007 - 1024
  • [8] Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Ansari, Khursheed J.
    Mursaleen, M.
    Rahman, Shagufta
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1007 - 1024
  • [9] STANCU VARIANT OF JAKIMOVSKI-LEVIATAN-DURRMEYER OPERATORS INVOLVING BRENKE TYPE POLYNOMIALS
    Agrawal, Purshottam Narain
    Singh, Sompal
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024, 7 (01): : 1 - 19
  • [10] Jakimovski-Leviatan operators of Durrmeyer type involving Appell polynomials
    Gupta, Pooja
    Agrawal, Purshottam Narain
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) : 1457 - 1470