Approximation by a Generalization of the Jakimovski-Leviatan Operators

被引:3
|
作者
Ari, Didem Aydin [1 ]
Serenbay, Sevilay Kirci [2 ]
机构
[1] Kirikkale Univ, Kirikkale, Turkey
[2] Harran Univ, Sanliurfa, Turkey
关键词
Jakimovski-Leviatan operator; Lipschitz class; weighted modulus of continuity; weighted spaces; rate of convergence;
D O I
10.2298/FIL1908345A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a Kantorovich type generalization of Jakimovski-Leviatan operators constructed by A. Jakimovski and D. Leviatan (1969) and the theorems on convergence and the degree of convergence are established. Furthermore, we study the convergence of these operators in a weighted space of functions on [0, infinity).
引用
收藏
页码:2345 / 2353
页数:9
相关论文
共 50 条
  • [1] Generalization of Jakimovski-Leviatan type Szasz operators
    Sucu, Sezgin
    Varma, Serhan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 977 - 983
  • [2] Approximation by Chlodowsky type Jakimovski-Leviatan operators
    Buyukyazici, Ibrahim
    Tanberkan, Hande
    Serenbay, Sevilay Kirci
    Atakut, Cigdem
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 153 - 163
  • [3] Approximation by Jakimovski-Leviatan Type Operators on a Complex Domain
    Sucu, Sezgin
    Ibikli, Ertan
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (01) : 177 - 188
  • [4] Approximation by Modified Integral Type Jakimovski-Leviatan Operators
    Atakut, Cigdem
    Buyukyazici, Ibrahim
    [J]. FILOMAT, 2016, 30 (01) : 29 - 39
  • [5] Asymptotic expansion of the Jakimovski-Leviatan operators and their derivatives
    Abel, U
    Ivan, M
    [J]. FUNCTIONS, SERIES, OPERATORS: ALEXITS MEMORIAL CONFERENCE, 2002, : 103 - 119
  • [6] Certain approximation properties of Brenke polynomials using Jakimovski-Leviatan operators
    Wani, Shahid Ahmad
    Mursaleen, M.
    Nisar, Kottakkaran Sooppy
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [7] Unveiling the Potential of Sheffer Polynomials: Exploring Approximation Features with Jakimovski-Leviatan Operators
    Zayed, Mohra
    Wani, Shahid Ahmad
    Bhat, Mohammad Younus
    [J]. MATHEMATICS, 2023, 11 (16)
  • [8] Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Ansari, Khursheed J.
    Mursaleen, M.
    Rahman, Shagufta
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1007 - 1024
  • [9] On Voronovskaya Type Result for Generalized Jakimovski-Leviatan Operators
    Yilmaz, Mine Menekse
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [10] Jakimovski-Leviatan operators of Durrmeyer type involving Appell polynomials
    Gupta, Pooja
    Agrawal, Purshottam Narain
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) : 1457 - 1470