Approximation by a Generalization of the Jakimovski-Leviatan Operators

被引:3
|
作者
Ari, Didem Aydin [1 ]
Serenbay, Sevilay Kirci [2 ]
机构
[1] Kirikkale Univ, Kirikkale, Turkey
[2] Harran Univ, Sanliurfa, Turkey
关键词
Jakimovski-Leviatan operator; Lipschitz class; weighted modulus of continuity; weighted spaces; rate of convergence;
D O I
10.2298/FIL1908345A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a Kantorovich type generalization of Jakimovski-Leviatan operators constructed by A. Jakimovski and D. Leviatan (1969) and the theorems on convergence and the degree of convergence are established. Furthermore, we study the convergence of these operators in a weighted space of functions on [0, infinity).
引用
收藏
页码:2345 / 2353
页数:9
相关论文
共 50 条
  • [41] ON A GENERALIZED BERNSTEIN POLYNOMIAL OF JAKIMOVSKI AND LEVIATAN
    WOOD, B
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1968, 106 (03) : 170 - &
  • [42] STANCU VARIANT OF JAKIMOVSKI-LEVIATAN-DURRMEYER OPERATORS INVOLVING BRENKE TYPE POLYNOMIALS
    Agrawal, Purshottam Narain
    Singh, Sompal
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024, 7 (01): : 1 - 19
  • [43] On Jakimovski-Leviatan-Paltanea approximating operators involving Boas-Buck-type polynomials
    Ansari, Khursheed J.
    Salman, M. A.
    Mursaleen, M.
    Al-Abied, A. H. H.
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2020, 32 (07) : 3018 - 3025
  • [44] Approximation by Durrmeyer type Jakimoski-Leviatan operators
    Karaisa, Ali
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (09) : 2401 - 2410
  • [45] Bézier variant of the Jakimovski–Leviatan–Păltănea operators based on Appell polynomials
    Goyal M.
    Agrawal P.N.
    [J]. ANNALI DELL'UNIVERSITA' DI FERRARA, 2017, 63 (2) : 289 - 302
  • [46] Approximation for a generalization of Bernstein operators
    Guofen Liu
    Xiuzhong Yang
    [J]. Journal of Inequalities and Applications, 2016
  • [47] GENERALIZATION OF BEST APPROXIMATION OPERATORS
    SULLIVAN, F
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (06): : A575 - A576
  • [48] Approximation for a generalization of Bernstein operators
    Liu, Guofen
    Yang, Xiuzhong
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [49] Approximation properties of a generalization of positive linear operators
    Dogru, Oguen
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) : 161 - 170
  • [50] Approximation by the Parametric Generalization of Baskakov–Kantorovich Operators Linking with Stancu Operators
    S. A. Mohiuddine
    Naeem Ahmad
    Faruk Özger
    Abdullah Alotaibi
    Bipan Hazarika
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 593 - 605