Bézier variant of the Jakimovski–Leviatan–Păltănea operators based on Appell polynomials

被引:0
|
作者
Goyal M. [1 ]
Agrawal P.N. [1 ]
机构
[1] Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee
关键词
Bounded variation; Bézier operator; Modulus of continuity; Rate of convergence;
D O I
10.1007/s11565-017-0288-9
中图分类号
学科分类号
摘要
In this paper, we introduce the Bézier variant of the Jakimovski–Leviatan–Păltănea operators based on Appell polynomials. We establish some local results, a direct approximation theorem by means of the Ditzian–Totik modulus of smoothness and also study the rate of convergence for the functions having a derivative of bounded variation for these operators. © 2017, Università degli Studi di Ferrara.
引用
收藏
页码:289 / 302
页数:13
相关论文
共 39 条
  • [1] Approximation for Jakimovski–Leviatan–Pǎltǎnea operators
    Verma D.K.
    Gupta V.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2015, 61 (2) : 367 - 380
  • [2] Approximation by Jakimovski-Leviatan-Pǎltǎnea operators involving Sheffer polynomials
    M. Mursaleen
    A. A. H. AL-Abeid
    Khursheed J. Ansari
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1251 - 1265
  • [3] A sequence of Appell polynomials and the associated Jakimovski–Leviatan operators
    Ana-Maria Acu
    Ioan Cristian Buscu
    Ioan Rasa
    Analysis and Mathematical Physics, 2021, 11
  • [4] A sequence of Appell polynomials and the associated Jakimovski-Leviatan operators
    Acu, Ana-Maria
    Buscu, Ioan Cristian
    Rasa, Ioan
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [5] Jakimovski-Leviatan operators of Durrmeyer type involving Appell polynomials
    Gupta, Pooja
    Agrawal, Purshottam Narain
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) : 1457 - 1470
  • [6] Jakimovski-Leviatan operators of Kantorovich type involving multiple Appell polynomials
    Gupta, Pooja
    Acu, Ana Maria
    Agrawal, Purshottam Narain
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (01) : 73 - 82
  • [7] Approximation by Jakimovski–Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Khursheed J. Ansari
    M. Mursaleen
    Shagufta Rahman
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1007 - 1024
  • [8] Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Ansari, Khursheed J.
    Mursaleen, M.
    Rahman, Shagufta
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1007 - 1024
  • [9] Approximation by Szasz-Jakimovski-Leviatan-Type Operators via Aid of Appell Polynomials
    Nasiruzzaman, Md
    Aljohani, A. F.
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [10] Approximation by q-analogue of Jakimovski–Leviatan operators involving q-Appell polynomials
    M. Mursaleen
    Khursheed J. Ansari
    Md Nasiruzzaman
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 891 - 900