Approximation by Jakimovski-Leviatan-Pǎltǎnea operators involving Sheffer polynomials

被引:0
|
作者
M. Mursaleen
A. A. H. AL-Abeid
Khursheed J. Ansari
机构
[1] Aligarh Muslim University,Department of Mathematics
[2] King Khalid University,Department of Mathematics, College of Science
关键词
Szász operators; Phillips operators; Modulus of continuity; Korovkin’s theorem; Sheffer polynomials; 41A10; 41A25; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of the present paper is to introduce Jakimovski-Leviatan-Pǎltǎnea operators which involve Sheffer polynomials. We investigate approximation properties of our operators with the help of the universal Korovkin-type property and also establish the rate of convergence by using the modulus of continuity, second order modulus of smoothness and Petree’s K-functional. Furthermore, we study the approximation by functions of bounded variations. Some graphical examples of the convergence of our operators and error estimation are also given.
引用
收藏
页码:1251 / 1265
页数:14
相关论文
共 50 条
  • [1] Approximation for Jakimovski–Leviatan–Pǎltǎnea operators
    Verma D.K.
    Gupta V.
    [J]. ANNALI DELL'UNIVERSITA' DI FERRARA, 2015, 61 (2) : 367 - 380
  • [2] Approximation by Jakimovski-Leviatan-Paltanea operators involving Sheffer polynomials
    Mursaleen, M.
    AL-Abeid, A. A. H.
    Ansari, Khursheed J.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1251 - 1265
  • [3] APPROXIMATION BY BEZIER VARIANT OF JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS INVOLVING SHEFFER POLYNOMIALS
    Agrawal, P. N.
    Kumar, Ajay
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 1522 - 1536
  • [4] Bézier variant of the Jakimovski–Leviatan–Păltănea operators based on Appell polynomials
    Goyal M.
    Agrawal P.N.
    [J]. ANNALI DELL'UNIVERSITA' DI FERRARA, 2017, 63 (2) : 289 - 302
  • [5] Unveiling the Potential of Sheffer Polynomials: Exploring Approximation Features with Jakimovski-Leviatan Operators
    Zayed, Mohra
    Wani, Shahid Ahmad
    Bhat, Mohammad Younus
    [J]. MATHEMATICS, 2023, 11 (16)
  • [6] Approximation by Jakimovski–Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Khursheed J. Ansari
    M. Mursaleen
    Shagufta Rahman
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1007 - 1024
  • [7] Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Ansari, Khursheed J.
    Mursaleen, M.
    Rahman, Shagufta
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1007 - 1024
  • [8] Certain approximation properties of Brenke polynomials using Jakimovski–Leviatan operators
    Shahid Ahmad Wani
    M. Mursaleen
    Kottakkaran Sooppy Nisar
    [J]. Journal of Inequalities and Applications, 2021
  • [9] Jakimovski-Leviatan operators of Durrmeyer type involving Appell polynomials
    Gupta, Pooja
    Agrawal, Purshottam Narain
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) : 1457 - 1470
  • [10] Approximation by q-analogue of Jakimovski–Leviatan operators involving q-Appell polynomials
    M. Mursaleen
    Khursheed J. Ansari
    Md Nasiruzzaman
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 891 - 900