APPROXIMATION BY BEZIER VARIANT OF JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS INVOLVING SHEFFER POLYNOMIALS

被引:4
|
作者
Agrawal, P. N. [1 ]
Kumar, Ajay [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttarakhand, India
关键词
Positive linear operators; rate of convergence; modulus of continuity; total variation; Sheffer polynomials; CONVERGENCE;
D O I
10.31801/cfsuasmas.750568
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, the Bezier variant of Jakimovski-Leviatan-Paltanea operators involving Sheffer polynomials is introduced and the degree of approximation by these operators is investigated with the aid of Ditzian-Totik modulus of smoothness, Lipschitz type space and for functions with derivatives of bounded variations.
引用
收藏
页码:1522 / 1536
页数:15
相关论文
共 50 条
  • [1] Approximation by Jakimovski-Leviatan-Paltanea operators involving Sheffer polynomials
    Mursaleen, M.
    AL-Abeid, A. A. H.
    Ansari, Khursheed J.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1251 - 1265
  • [2] On the Chlodowsky variant of Jakimovski-Leviatan-Paltanea Operators
    Dalmanoglu, Ozge
    Orkcu, Mediha
    [J]. GAZI UNIVERSITY JOURNAL OF SCIENCE, 2021, 34 (03): : 821 - 833
  • [3] APPROXIMATION BY STANCU TYPE JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS
    Kumar, Alok
    Vandana
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 936 - 948
  • [4] On Jakimovski-Leviatan-Paltanea approximating operators involving Boas-Buck-type polynomials
    Ansari, Khursheed J.
    Salman, M. A.
    Mursaleen, M.
    Al-Abied, A. H. H.
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2020, 32 (07) : 3018 - 3025
  • [5] Approximation by Jakimovski-Leviatan-Pǎltǎnea operators involving Sheffer polynomials
    M. Mursaleen
    A. A. H. AL-Abeid
    Khursheed J. Ansari
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1251 - 1265
  • [6] Unveiling the Potential of Sheffer Polynomials: Exploring Approximation Features with Jakimovski-Leviatan Operators
    Zayed, Mohra
    Wani, Shahid Ahmad
    Bhat, Mohammad Younus
    [J]. MATHEMATICS, 2023, 11 (16)
  • [7] Approximation by Jakimovski–Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Khursheed J. Ansari
    M. Mursaleen
    Shagufta Rahman
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1007 - 1024
  • [8] Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Ansari, Khursheed J.
    Mursaleen, M.
    Rahman, Shagufta
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1007 - 1024
  • [9] STANCU VARIANT OF JAKIMOVSKI-LEVIATAN-DURRMEYER OPERATORS INVOLVING BRENKE TYPE POLYNOMIALS
    Agrawal, Purshottam Narain
    Singh, Sompal
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024, 7 (01): : 1 - 19
  • [10] Certain approximation properties of Brenke polynomials using Jakimovski–Leviatan operators
    Shahid Ahmad Wani
    M. Mursaleen
    Kottakkaran Sooppy Nisar
    [J]. Journal of Inequalities and Applications, 2021