Approximation by Jakimovski-Leviatan-Pǎltǎnea operators involving Sheffer polynomials

被引:0
|
作者
M. Mursaleen
A. A. H. AL-Abeid
Khursheed J. Ansari
机构
[1] Aligarh Muslim University,Department of Mathematics
[2] King Khalid University,Department of Mathematics, College of Science
关键词
Szász operators; Phillips operators; Modulus of continuity; Korovkin’s theorem; Sheffer polynomials; 41A10; 41A25; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of the present paper is to introduce Jakimovski-Leviatan-Pǎltǎnea operators which involve Sheffer polynomials. We investigate approximation properties of our operators with the help of the universal Korovkin-type property and also establish the rate of convergence by using the modulus of continuity, second order modulus of smoothness and Petree’s K-functional. Furthermore, we study the approximation by functions of bounded variations. Some graphical examples of the convergence of our operators and error estimation are also given.
引用
收藏
页码:1251 / 1265
页数:14
相关论文
共 50 条
  • [31] Degree of approximation by Chlodowsky variant of Jakimovski–Leviatan–Durrmeyer type operators
    Trapti Neer
    Ana Maria Acu
    P. N. Agrawal
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3445 - 3459
  • [32] Approximation by generalized Stancu type integral operators involving Sheffer polynomials
    Mursaleen, M.
    Rahman, Shagufta
    Ansari, Khursheed J.
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (02) : 215 - 228
  • [33] Approximation and error estimation by modified Păltănea operators associating Gould–Hopper polynomials
    Khursheed J. Ansari
    Shagufta Rahman
    M. Mursaleen
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 2827 - 2851
  • [34] Degree of approximation by Chlodowsky variant of Jakimovski-Leviatan-Durrmeyer type operators
    Neer, Trapti
    Acu, Ana Maria
    Agrawal, P. N.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3445 - 3459
  • [35] Approximation by Operators for the Sheffer-Appell Polynomials
    Jeelani, Mdi Begum
    Alnahdi, Abeer S.
    [J]. SYMMETRY-BASEL, 2022, 14 (12):
  • [36] Approximation results for the operators involving beta function and the Boas-Buck-Sheffer polynomials
    Gungor, Sule Yuksel
    Cekim, Bayram
    Ozarslan, Mehmet Ali
    [J]. FILOMAT, 2024, 38 (01) : 171 - 187
  • [37] Approximation by Generalized Integral Favard-Szasz Type Operators Involving Sheffer Polynomials
    Karateke, Seda
    Atakut, Cigdem
    Buyukyazici, Ibrahim
    [J]. FILOMAT, 2019, 33 (07) : 1921 - 1935
  • [38] Generalization of Szasz operators involving multiple Sheffer polynomials
    Ali, Mahvish
    Paris, Richard B.
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (01): : 1 - 19
  • [39] Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus
    Alotaibi, Abdullah
    Mursaleen, M.
    [J]. AIMS MATHEMATICS, 2020, 5 (04): : 3019 - 3034
  • [40] Approximation of GBS Type q-Jakimovski-Leviatan-Beta Integral Operators in Bogel Space
    Alotaibi, Abdullah
    [J]. MATHEMATICS, 2022, 10 (05)