A memristive diode for neuromorphic computing

被引:5
|
作者
Wang, Xiaolei [1 ,2 ,3 ]
Shao, Qi [1 ,2 ]
Ku, Pui Sze [1 ,2 ]
Ruotolo, Antonio [1 ,2 ]
机构
[1] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China
[2] City Univ Hong Kong, CFP, Kowloon, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
基金
美国国家科学基金会;
关键词
Memristor; Neuromorphic circuits; Adaptive electronics; NONVOLATILE MEMORY; DOPED SRTIO3; TRANSITION; INSULATOR; MECHANISM; DEVICE; FILMS; ZNO;
D O I
10.1016/j.mee.2014.12.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Memristive devices may extent the potential of information processing beyond Boolean computation. Of particular interest for computer science are those devices that change behavior according to the particular stimulus given. This property is called plasticity and is typical of biological systems, like neuron synapses. We here show that a memristive diode can be fabricated by using low-resistive ZnO. Bipolar memristive switching is induced in ZnO-based Schottky diodes. The electrical characterization of the devices confirms that switching is due to uniform migration of oxygen vacancies under the interface. The induced electrical state can be dynamically altered according to polarity, amplitude and duration of applied electrical stimuli. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 11
页数:5
相关论文
共 50 条
  • [1] Neuromorphic computing with memristive devices
    Wen Ma
    Mohammed A. Zidan
    Wei D. Lu
    Science China Information Sciences, 2018, 61
  • [2] Neuromorphic computing with memristive devices
    Wen MA
    Mohammed A.ZIDAN
    Wei D.LU
    Science China(Information Sciences), 2018, 61 (06) : 136 - 144
  • [3] Neuromorphic computing with memristive devices
    Ma, Wen
    Zidan, Mohammed A.
    Lu, Wei D.
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (06)
  • [4] Perspective on photonic memristive neuromorphic computing
    Elena Goi
    Qiming Zhang
    Xi Chen
    Haitao Luan
    Min Gu
    PhotoniX, 1
  • [5] Memristive Artificial Synapses for Neuromorphic Computing
    Wen Huang
    Xuwen Xia
    Chen Zhu
    Parker Steichen
    Weidong Quan
    Weiwei Mao
    Jianping Yang
    Liang Chu
    Xing'ao Li
    Nano-Micro Letters, 2021, 13 (05) : 224 - 251
  • [6] Memristive Artificial Synapses for Neuromorphic Computing
    Wen Huang
    Xuwen Xia
    Chen Zhu
    Parker Steichen
    Weidong Quan
    Weiwei Mao
    Jianping Yang
    Liang Chu
    Xing’ao Li
    Nano-Micro Letters, 2021, 13
  • [7] Perspective on photonic memristive neuromorphic computing
    Goi, Elena
    Zhang, Qiming
    Chen, Xi
    Luan, Haitao
    Gu, Min
    PHOTONIX, 2020, 1 (01)
  • [8] Memristive and CMOS Devices for Neuromorphic Computing
    Milo, Valerio
    Malavena, Gerardo
    Compagnoni, Christian Monzio
    Ielmini, Daniele
    MATERIALS, 2020, 13 (01) : 166
  • [9] Memristive Artificial Synapses for Neuromorphic Computing
    Huang, Wen
    Xia, Xuwen
    Zhu, Chen
    Steichen, Parker
    Quan, Weidong
    Mao, Weiwei
    Yang, Jianping
    Chu, Liang
    Li, Xing'ao
    NANO-MICRO LETTERS, 2021, 13 (01)
  • [10] Memristive Hydrophobic Nanopores for Neuromorphic Computing
    Paulo, Goncalo
    Di Muccio, Giovanni
    Sun, Ke
    Gubbiotti, Alberto
    della Rocca, Blasco Morozzo
    Maglia, Giovanni
    Chinappi, Mauro
    Giacomello, Alberto
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2023, 52 (SUPPL 1): : S178 - S178