A memristive diode for neuromorphic computing

被引:5
|
作者
Wang, Xiaolei [1 ,2 ,3 ]
Shao, Qi [1 ,2 ]
Ku, Pui Sze [1 ,2 ]
Ruotolo, Antonio [1 ,2 ]
机构
[1] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China
[2] City Univ Hong Kong, CFP, Kowloon, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
基金
美国国家科学基金会;
关键词
Memristor; Neuromorphic circuits; Adaptive electronics; NONVOLATILE MEMORY; DOPED SRTIO3; TRANSITION; INSULATOR; MECHANISM; DEVICE; FILMS; ZNO;
D O I
10.1016/j.mee.2014.12.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Memristive devices may extent the potential of information processing beyond Boolean computation. Of particular interest for computer science are those devices that change behavior according to the particular stimulus given. This property is called plasticity and is typical of biological systems, like neuron synapses. We here show that a memristive diode can be fabricated by using low-resistive ZnO. Bipolar memristive switching is induced in ZnO-based Schottky diodes. The electrical characterization of the devices confirms that switching is due to uniform migration of oxygen vacancies under the interface. The induced electrical state can be dynamically altered according to polarity, amplitude and duration of applied electrical stimuli. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 11
页数:5
相关论文
共 50 条
  • [41] Guest Editorial: Memristive electronic circuits, neural networks and neuromorphic computing
    Sun, Yichuang
    ELECTRONICS LETTERS, 2024, 60 (22)
  • [42] Fault tolerance in memristive crossbar-based neuromorphic computing systems
    Xu, Qi
    Chen, Song
    Geng, Hao
    Yuan, Bo
    Yu, Bei
    Wu, Feng
    Huang, Zhengfeng
    INTEGRATION-THE VLSI JOURNAL, 2020, 70 : 70 - 79
  • [43] Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing
    Bian, Hongyu
    Goh, Yi Yiing
    Liu, Yuxia
    Ling, Haifeng
    Xie, Linghai
    Liu, Xiaogang
    ADVANCED MATERIALS, 2021, 33 (46)
  • [44] All-memristive neuromorphic computing with level-tuned neurons
    Pantazi, Angeliki
    Wozniak, Stanislaw
    Tuma, Tomas
    Eleftheriou, Evangelos
    NANOTECHNOLOGY, 2016, 27 (35)
  • [45] Neuromorphic computing with hybrid memristive/CMOS synapses for real-time learning
    Ielmini, D.
    Ambrogio, S.
    Milo, V.
    Balatti, S.
    Wang, Z. -Q.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 1386 - 1389
  • [46] ABO3 multiferroic perovskite materials for memristive memory and neuromorphic computing
    Sun, Bai
    Zhou, Guangdong
    Sun, Linfeng
    Zhao, Hongbin
    Chen, Yuanzheng
    Yang, Feng
    Zhao, Yong
    Song, Qunliang
    NANOSCALE HORIZONS, 2021, 6 (12) : 939 - 970
  • [47] Interplay of multiple synaptic plasticity features in filamentary memristive devices for neuromorphic computing
    Selina La Barbera
    Adrien F. Vincent
    Dominique Vuillaume
    Damien Querlioz
    Fabien Alibart
    Scientific Reports, 6
  • [48] Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing
    Choi, Sanghyeon
    Yang, Jehyeon
    Wang, Gunuk
    ADVANCED MATERIALS, 2020, 32 (51)
  • [49] Memristive Crossbar Mapping for Neuromorphic Computing Systems on 3D IC
    Xu, Qi
    Chen, Song
    Yu, Bei
    Wu, Feng
    PROCEEDINGS OF THE 2018 GREAT LAKES SYMPOSIUM ON VLSI (GLSVLSI'18), 2018, : 451 - 454
  • [50] Adaptive SRM neuron based on NbO X memristive device for neuromorphic computing
    Huang, Jing-Nan
    Wang, Tong
    Huang, He-Ming
    Guo, Xin
    CHIP, 2022, 1 (02):