A memristive diode for neuromorphic computing

被引:5
|
作者
Wang, Xiaolei [1 ,2 ,3 ]
Shao, Qi [1 ,2 ]
Ku, Pui Sze [1 ,2 ]
Ruotolo, Antonio [1 ,2 ]
机构
[1] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China
[2] City Univ Hong Kong, CFP, Kowloon, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
基金
美国国家科学基金会;
关键词
Memristor; Neuromorphic circuits; Adaptive electronics; NONVOLATILE MEMORY; DOPED SRTIO3; TRANSITION; INSULATOR; MECHANISM; DEVICE; FILMS; ZNO;
D O I
10.1016/j.mee.2014.12.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Memristive devices may extent the potential of information processing beyond Boolean computation. Of particular interest for computer science are those devices that change behavior according to the particular stimulus given. This property is called plasticity and is typical of biological systems, like neuron synapses. We here show that a memristive diode can be fabricated by using low-resistive ZnO. Bipolar memristive switching is induced in ZnO-based Schottky diodes. The electrical characterization of the devices confirms that switching is due to uniform migration of oxygen vacancies under the interface. The induced electrical state can be dynamically altered according to polarity, amplitude and duration of applied electrical stimuli. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 11
页数:5
相关论文
共 50 条
  • [21] Flexible memristive spiking neuronfor neuromorphic sensing and computing
    Zhu Jia-Xue
    Zhang Xu-Meng
    Wang Rui
    Liu Qi
    ACTA PHYSICA SINICA, 2022, 71 (14)
  • [22] Graphene memristive synapses for high precision neuromorphic computing
    Schranghamer, Thomas F.
    Oberoi, Aaryan
    Das, Saptarshi
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [23] Graphene memristive synapses for high precision neuromorphic computing
    Thomas F. Schranghamer
    Aaryan Oberoi
    Saptarshi Das
    Nature Communications, 11
  • [24] Memristive Memory Enhancement by Device Miniaturization for Neuromorphic Computing
    Goossens, Anouk S.
    Ahmadi, Majid
    Gupta, Divyanshu
    Bhaduri, Ishitro
    Kooi, Bart J.
    Banerjee, Tamalika
    ADVANCED ELECTRONIC MATERIALS, 2023, 9 (04):
  • [25] Simulation of memristive synapses and neuromorphic computing on a quantum computer
    Li, Ying
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [26] Complementary memristive diode cells for the memory matrix of a neuromorphic processor
    Maevsky, O., V
    Pisarev, A. D.
    Busygin, A. N.
    Udovichenko, S. Yu
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2018, 15 (4-5) : 388 - 393
  • [27] LiSiOX-Based Analog Memristive Synapse for Neuromorphic Computing
    Chen, Jia
    Lin, Chih-Yang
    Li, Yi
    Qin, Chao
    Lu, Ke
    Wang, Jie-Ming
    Chen, Chun-Kuei
    He, Yu-Hui
    Chang, Ting-Chang
    Sze, Simon M.
    Miao, Xiang-Shui
    IEEE ELECTRON DEVICE LETTERS, 2019, 40 (04) : 542 - 545
  • [28] Interface engineering for enhanced memristive devices and neuromorphic computing applications
    Xiao, Ming
    Shen, Daozhi
    Huang, Jijie
    INTERNATIONAL MATERIALS REVIEWS, 2025,
  • [29] Self-Powered Memristive Systems for Storage and Neuromorphic Computing
    Shi, Jiajuan
    Wang, Zhongqiang
    Tao, Ye
    Xu, Haiyang
    Zhao, Xiaoning
    Lin, Ya
    Liu, Yichun
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [30] Memristive Circuit Implementation of Caenorhabditis Elegans Mechanism for Neuromorphic Computing
    Chen, Hegan
    Hong, Qinghui
    Wang, Zhongrui
    Wang, Chunhua
    Zeng, Xiangxiang
    Zhang, Jiliang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12015 - 12026