Interactive visual mining of massive multidimensional datasets

被引:0
|
作者
Mihalisin, T [1 ]
Timlin, J [1 ]
机构
[1] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA
关键词
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Recent extensions to the TempleMVV multidimensional visualization system (U.S. Patent No. 5228,119) greatly enhance its analysis and data mining capabilities. The system can now be used to visually examine datasets containing hundreds of millions of records and thousands of variables in a highly interactive fashion. One can now perform fits and view the original data, fit predictions and residuals in a space of up to 10 dimensions. Two, three or thousands of dependent variables (response variables or measures) can be plotted in a 10 dimensional manner against independent variables (explanatory variables or dimensions). Boolean operator criteria can be set that control which dependent variables or sets of dependent variables are displayed in the multidimensional space. One can visually detect highly conditional domain specific correlations and associations, multidimensional filamentary clusters and isolated cells or regions of abnormally high frequency. If suitable graphic data representations are used, human pattern recognition skills allow one to quickly discover effects that often elude algorithms. Moreover the multidimensional plotting capabilities allow one to view isolated "nuggets" of information in context so that one can ascertain not only their statistical significance but also their significance relative to other "nuggets".
引用
收藏
页码:450 / 455
页数:6
相关论文
共 50 条
  • [31] VizAssist: an interactive user assistant for visual data mining
    Bouali, Fatma
    Guettala, Abdelheq
    Venturini, Gilles
    [J]. VISUAL COMPUTER, 2016, 32 (11): : 1447 - 1463
  • [32] Visual Interactive Approach for Mining Twitter's Networks
    Abdelsadek, Youcef
    Chelghoum, Kamel
    Herrmann, Francine
    Kacem, Imed
    Otjacques, Benoit
    [J]. DATA MINING AND BIG DATA, DMBD 2016, 2016, 9714 : 342 - 349
  • [33] VizAssist: an interactive user assistant for visual data mining
    Fatma Bouali
    Abdelheq Guettala
    Gilles Venturini
    [J]. The Visual Computer, 2016, 32 : 1447 - 1463
  • [34] Efficient parallel data mining for massive datasets: Parallel random forests classifier
    Dai, JY
    Lee, J
    Wang, MC
    [J]. PDPTA '05: PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS 1-3, 2005, : 1142 - 1148
  • [35] iSAX: disk-aware mining and indexing of massive time series datasets
    Shieh, Jin
    Keogh, Eamonn
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2009, 19 (01) : 24 - 57
  • [36] iSAX: disk-aware mining and indexing of massive time series datasets
    Jin Shieh
    Eamonn Keogh
    [J]. Data Mining and Knowledge Discovery, 2009, 19 : 24 - 57
  • [37] AVIST: A GPU-Centric Design for Visual Exploration of Large Multidimensional Datasets
    Mi, Peng
    Sun, Maoyuan
    Masiane, Moeti
    Cao, Yong
    North, Chris
    [J]. INFORMATICS-BASEL, 2016, 3 (04):
  • [38] Similarity-based visual exploration of very large georeferenced multidimensional datasets
    Peralta-Aranibar, Roger
    Pahins, Cicero A. L.
    Comba, Joao L. D.
    Gomez-Nieto, Erick
    [J]. SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 683 - 686
  • [39] Regression Cube: A Technique for Multidimensional Visual Exploration and Interactive Pattern Finding
    Chan, Yu-Hsuan
    Correa, Carlos D.
    Ma, Kwan-Liu
    [J]. ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2014, 4 (01)
  • [40] Interactive visual analytics tool for multidimensional quantitative and categorical data analysis
    Shahid, Muhammad Laiq Ur Rahman
    Molchanov, Vladimir
    Mir, Junaid
    Shaukat, Furqan
    Linsen, Lars
    [J]. INFORMATION VISUALIZATION, 2020, 19 (03) : 234 - 246