Visual Interactive Approach for Mining Twitter's Networks

被引:1
|
作者
Abdelsadek, Youcef [1 ]
Chelghoum, Kamel [1 ]
Herrmann, Francine [1 ]
Kacem, Imed [1 ]
Otjacques, Benoit [2 ]
机构
[1] Univ Lorraine, LCOMS, EA 7306, Metz, France
[2] Luxembourg Inst Sci & Technol, E Sci Res Unit, Environm Res & Innovat Dept, Belvaux, Luxembourg
来源
关键词
Graph visualization; Interactive visualization; Community detection; Twitter's networks; SOCIAL NETWORKS;
D O I
10.1007/978-3-319-40973-3_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding the semantic behind relational data is very challenging, especially, when it is tricky to provide efficient analysis at scale. Furthermore, the complexity is also driven by the dynamical nature of data. Indeed, the analysis given at a specific time point becomes unsustainable even incorrect over time. In this paper, we rely on a visual interactive approach to handle Twitter's networks using NLCOMS. NLCOMS provides multiple and coordinated views in order to grasp the underlying information. Finally, the applicability of the proposed approach is assessed on real-world data of the ANR-Info-RSN project.
引用
收藏
页码:342 / 349
页数:8
相关论文
共 50 条
  • [1] Visual Event Mining from the Twitter Stream
    Kaneko, Takamu
    Yanai, Keiji
    [J]. PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), 2016, : 51 - 52
  • [2] Interactive Visual Graph Mining and Learning
    Rossi, Ryan A.
    Ahmed, Nesreen K.
    Zhou, Rong
    Eldardiry, Hoda
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2018, 9 (05)
  • [3] A Visual Data Mining Approach to Find Overlapping Communities in Networks
    Chen, Jiyang
    Zaiane, Osmar R.
    Goebel, Randy
    [J]. 2009 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, 2009, : 338 - 343
  • [4] [DEMO PAPER] TWITTER VISUAL EVENT MINING SYSTEM
    Kaneko, Takamu
    Harada, Hiroyoshi
    Yanai, Keiji
    [J]. ELECTRONIC PROCEEDINGS OF THE 2013 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW), 2013,
  • [5] Data Mining of Twitter Retweets: A Visual and Practical Representation
    Zhan, Tiffany
    [J]. 2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 672 - 676
  • [6] MIME: A Framework for Interactive Visual Pattern Mining
    Goethals, Bart
    Moens, Sandy
    Vreeken, Jilles
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2011, 6913 : 634 - 637
  • [7] Visual transformation for interactive spatiotemporal data mining
    Yang Cai
    Richard Stumpf
    Timothy Wynne
    Michelle Tomlinson
    Daniel Sai Ho Chung
    Xavier Boutonnier
    Matthias Ihmig
    Rafael Franco
    Nathaniel Bauernfeind
    [J]. Knowledge and Information Systems, 2007, 13 : 119 - 142
  • [8] Visual transformation for interactive spatiotemporal data mining
    Cai, Yang
    Stumpf, Richard
    Wynne, Timothy
    Tomlinson, Michelle
    Chung, Daniel Sai Ho
    Boutonnier, Xavier
    Ihmig, Matthias
    Franco, Rafael
    Bauernfeind, Nathaniel
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2007, 13 (02) : 119 - 142
  • [9] Interactive visual mining of massive multidimensional datasets
    Mihalisin, T
    Timlin, J
    [J]. MINING AND MODELING MASSIVE DATA SETS IN SCIENCE, ENGINEERING, AND BUSINESS WITH A SUBTHEME IN ENVIRONMENTAL STATISTICS, 1997, 29 (01): : 450 - 455
  • [10] Visual Mining of Epidemic Networks
    Clemencon, Stephan
    De Arazoza, Hector
    Rossi, Fabrice
    Tran, Viet-Chi
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2011, PT II, 2011, 6692 : 276 - 283