Interactive visual mining of massive multidimensional datasets

被引:0
|
作者
Mihalisin, T [1 ]
Timlin, J [1 ]
机构
[1] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA
关键词
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Recent extensions to the TempleMVV multidimensional visualization system (U.S. Patent No. 5228,119) greatly enhance its analysis and data mining capabilities. The system can now be used to visually examine datasets containing hundreds of millions of records and thousands of variables in a highly interactive fashion. One can now perform fits and view the original data, fit predictions and residuals in a space of up to 10 dimensions. Two, three or thousands of dependent variables (response variables or measures) can be plotted in a 10 dimensional manner against independent variables (explanatory variables or dimensions). Boolean operator criteria can be set that control which dependent variables or sets of dependent variables are displayed in the multidimensional space. One can visually detect highly conditional domain specific correlations and associations, multidimensional filamentary clusters and isolated cells or regions of abnormally high frequency. If suitable graphic data representations are used, human pattern recognition skills allow one to quickly discover effects that often elude algorithms. Moreover the multidimensional plotting capabilities allow one to view isolated "nuggets" of information in context so that one can ascertain not only their statistical significance but also their significance relative to other "nuggets".
引用
收藏
页码:450 / 455
页数:6
相关论文
共 50 条
  • [1] Mining of Massive Datasets
    Richter, Lothar
    [J]. BIOMETRICS, 2018, 74 (04) : 1520 - 1521
  • [2] Data mining of massive datasets in healthcare
    Goodall, CR
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (03) : 620 - 634
  • [3] GeoLens: Enabling Interactive Visual Analytics over Large-scale, Multidimensional Geospatial Datasets
    Koontz, Jared
    Malensek, Matthew
    Pallickara, Sangmi Lee
    [J]. 2014 IEEE/ACM INTERNATIONAL SYMPOSIUM ON BIG DATA COMPUTING (BDC), 2014, : 35 - 44
  • [4] Multidimensional Mining of Massive Text Data
    Zhang, Chao
    Han, Jiawei
    [J]. Synthesis Lectures on Data Mining and Knowledge Discovery, 2019, 11 (02): : 1 - 198
  • [5] A Framework for Interactive Multidimensional Process Mining
    Vogelgesang, Thomas
    Rinderle-Ma, Stefanie
    Appelrath, H-Juergen
    [J]. BUSINESS PROCESS MANAGEMENT WORKSHOPS, BPM 2016, 2017, 281 : 23 - 35
  • [6] Mining of Massive Datasets. Third Edition
    Layton, Anita
    Sadria, Mehrshad
    [J]. SIAM REVIEW, 2021, 63 (03) : 649 - 650
  • [7] TabuVis: A tool for visual analytics multidimensional datasets
    Nguyen Quang Vinh
    Qian Yu
    Huang MaoLin
    Zhang JiaWan
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (05) : 1 - 12
  • [8] TabuVis: A tool for visual analytics multidimensional datasets
    Quang Vinh Nguyen
    Yu Qian
    MaoLin Huang
    JiaWan Zhang
    [J]. Science China Information Sciences, 2013, 56 : 1 - 12
  • [9] TabuVis:A tool for visual analytics multidimensional datasets
    NGUYEN Quang Vinh
    QIAN Yu
    HUANG MaoLin
    ZHANG JiaWan
    [J]. Science China(Information Sciences), 2013, 56 (05) : 64 - 75
  • [10] Interactive Visual Summarization of Multidimensional Data
    Kocherlakota, Sarat M.
    Healey, Christopher G.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 362 - +