Regression Cube: A Technique for Multidimensional Visual Exploration and Interactive Pattern Finding

被引:11
|
作者
Chan, Yu-Hsuan [1 ]
Correa, Carlos D. [2 ]
Ma, Kwan-Liu [1 ]
机构
[1] Univ Calif Davis, Davis, CA 95616 USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
Visualization; scatterplot; sensitivity analysis; interactions; pattern discovery; data transformation; model fitting; multidimensional data visualization;
D O I
10.1145/2590349
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scatterplots are commonly used to visualize multidimensional data; however, 2D projections of data offer limited understanding of the high-dimensional interactions between data points. We introduce an interactive 3D extension of scatterplots called the Regression Cube (RC), which augments a 3D scatterplot with three facets on which the correlations between the two variables are revealed by sensitivity lines and sensitivity streamlines. The sensitivity visualization of local regression on the 2D projections provides insights about the shape of the data through its orientation and continuity cues. We also introduce a series of visual operations such as clustering, brushing, and selection supported in RC. By iteratively refining the selection of data points of interest, RC is able to reveal salient local correlation patterns that may otherwise remain hidden with a global analysis. We have demonstrated our system with two examples and a user-oriented evaluation, and we show how RCs enable interactive visual exploration of multidimensional datasets via a variety of classification and information retrieval tasks. A video demo of RC is available.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] HyperNP: Interactive Visual Exploration of Multidimensional Projection Hyperparameters
    Appleby, G.
    Espadoto, M.
    Chen, R.
    Goree, S.
    Telea, A. C.
    Anderson, E. W.
    Chang, R.
    COMPUTER GRAPHICS FORUM, 2022, 41 (03) : 169 - 181
  • [2] Multidimensional data visual exploration by interactive information segments
    Ferrer-Troyano, FJ
    Aguilar-Ruiz, JS
    Riquelme, JC
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2004, 3181 : 239 - 248
  • [3] Distributed and Interactive Cube Exploration
    Kamat, Niranjan
    Jayachandran, Prasanth
    Tunga, Karthik
    Nandi, Arnab
    2014 IEEE 30TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2014, : 472 - 483
  • [4] Interactive visual exploration of multidimensional data: Requirements for CommonGIS with OLAP
    Voss, A
    Hernandez, V
    Voss, H
    Scheider, S
    15TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2004, : 883 - 887
  • [5] MultiClusterTree: Interactive Visual Exploration of Hierarchical Clusters in Multidimensional Multivariate Data
    Van Long, Tran
    Linsen, Lars
    COMPUTER GRAPHICS FORUM, 2009, 28 (03) : 823 - 830
  • [6] Feedback-Driven Interactive Exploration of Large Multidimensional Data Supported by Visual Classifier
    Behrisch, Michael
    Korkmaz, Fatih
    Shao, Lin
    Schreck, Tobias
    2014 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2014, : 43 - 52
  • [7] Interactive visual exploration and analysis
    Weber, Gunther H.
    Hauser, Helwig
    Mathematics and Visualization, 2014, 37 : 161 - 173
  • [8] A method of visual interactive regression
    Kim, Michelle S.
    Alto, Palo
    Burkart, Maureen
    Kim, Myung-Hoon
    JOURNAL OF CHEMICAL EDUCATION, 2006, 83 (12) : 1884 - U5
  • [9] Interactive Visual Summarization of Multidimensional Data
    Kocherlakota, Sarat M.
    Healey, Christopher G.
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 362 - +
  • [10] VISUALIZATION AND INTERACTIVE EXPLORATION OF MULTIDIMENSIONAL CONFOCAL IMAGES
    SAMARABANDU, JK
    ACHARYA, R
    CHENG, PC
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 1993, 17 (03) : 183 - 188