Regression Cube: A Technique for Multidimensional Visual Exploration and Interactive Pattern Finding

被引:11
|
作者
Chan, Yu-Hsuan [1 ]
Correa, Carlos D. [2 ]
Ma, Kwan-Liu [1 ]
机构
[1] Univ Calif Davis, Davis, CA 95616 USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
Visualization; scatterplot; sensitivity analysis; interactions; pattern discovery; data transformation; model fitting; multidimensional data visualization;
D O I
10.1145/2590349
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scatterplots are commonly used to visualize multidimensional data; however, 2D projections of data offer limited understanding of the high-dimensional interactions between data points. We introduce an interactive 3D extension of scatterplots called the Regression Cube (RC), which augments a 3D scatterplot with three facets on which the correlations between the two variables are revealed by sensitivity lines and sensitivity streamlines. The sensitivity visualization of local regression on the 2D projections provides insights about the shape of the data through its orientation and continuity cues. We also introduce a series of visual operations such as clustering, brushing, and selection supported in RC. By iteratively refining the selection of data points of interest, RC is able to reveal salient local correlation patterns that may otherwise remain hidden with a global analysis. We have demonstrated our system with two examples and a user-oriented evaluation, and we show how RCs enable interactive visual exploration of multidimensional datasets via a variety of classification and information retrieval tasks. A video demo of RC is available.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] 3D Parallel Coordinates for Multidimensional Data Cube Exploration
    Alwajidi, Safaa
    Yang, Li
    2018 INTERNATIONAL CONFERENCE ON COMPUTING AND BIG DATA (ICCBD 2018), 2018, : 23 - 27
  • [22] MILVA: An interactive tool for the exploration of multidimensional microarray data
    D'Alimonte, D
    Lowe, D
    Nabney, IT
    Mersinias, V
    Smith, CP
    BIOINFORMATICS, 2005, 21 (22) : 4192 - 4193
  • [23] Interactive data exploration using pattern mining
    Van Leeuwen, Matthijs
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8401 : 169 - 182
  • [24] Perceptual exploration and intersensory merging in a visual–haptic Necker cube
    Nicola Bruno
    Cognitive Processing, 2006, 7 (Suppl 1) : 22 - 22
  • [25] Interactive visual exploration and refinement of cluster assignments
    Kern, Michael
    Lex, Alexander
    Gehlenborg, Nils
    Johnson, Chris R.
    BMC BIOINFORMATICS, 2017, 18
  • [26] 'interHist' - an interactive visual interface for corpus exploration
    Lyding, Verena
    Nicolas, Lionel
    Stemle, Egon
    LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2014, : 635 - 641
  • [27] Interactive visual exploration for knowledge discovery on the Web
    Oxman, R
    1997 IEEE CONFERENCE ON INFORMATION VISUALIZATION, PROCEEDINGS: AN INTERNATIONAL CONFERENCE ON COMPUTER VISUALIZATION & GRAPHICS, 1997, : 228 - 234
  • [28] Interactive Visual Exploration of Big Relational Datasets
    Vitsaxaki, Katerina
    Ntoa, Stavroula
    Margetis, George
    Spyratos, Nicolas
    INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION, 2023, 39 (10) : 2033 - 2047
  • [29] A visual language for Interactive Data Exploration and Analysis
    Selfridge, P
    Srivastava, D
    IEEE SYMPOSIUM ON VISUAL LANGUAGES, PROCEEDINGS, 1996, : 84 - 85
  • [30] Interactive visual formula composition of multidimensional data classifiers
    Derstroff, Adrian
    Leistikow, Simon
    Nahardani, Ali
    Gruen, Katja
    Franz, Marcus
    Hoerr, Verena
    Linsen, Lars
    INFORMATION VISUALIZATION, 2025, 24 (01) : 42 - 61