Regression Cube: A Technique for Multidimensional Visual Exploration and Interactive Pattern Finding

被引:11
|
作者
Chan, Yu-Hsuan [1 ]
Correa, Carlos D. [2 ]
Ma, Kwan-Liu [1 ]
机构
[1] Univ Calif Davis, Davis, CA 95616 USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
Visualization; scatterplot; sensitivity analysis; interactions; pattern discovery; data transformation; model fitting; multidimensional data visualization;
D O I
10.1145/2590349
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scatterplots are commonly used to visualize multidimensional data; however, 2D projections of data offer limited understanding of the high-dimensional interactions between data points. We introduce an interactive 3D extension of scatterplots called the Regression Cube (RC), which augments a 3D scatterplot with three facets on which the correlations between the two variables are revealed by sensitivity lines and sensitivity streamlines. The sensitivity visualization of local regression on the 2D projections provides insights about the shape of the data through its orientation and continuity cues. We also introduce a series of visual operations such as clustering, brushing, and selection supported in RC. By iteratively refining the selection of data points of interest, RC is able to reveal salient local correlation patterns that may otherwise remain hidden with a global analysis. We have demonstrated our system with two examples and a user-oriented evaluation, and we show how RCs enable interactive visual exploration of multidimensional datasets via a variety of classification and information retrieval tasks. A video demo of RC is available.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] ChemoGraph: Interactive Visual Exploration of the Chemical Space
    Kale, Bharat
    Clyde, Austin
    Sun, Maoyuan
    Ramanathan, Arvind
    Stevens, Rick
    Papka, Michael E. E.
    COMPUTER GRAPHICS FORUM, 2023, 42 (03) : 13 - 24
  • [32] Interactive visual exploration of surgical process data
    Benedikt Mayer
    Monique Meuschke
    Jimmy Chen
    Beat P. Müller-Stich
    Martin Wagner
    Bernhard Preim
    Sandy Engelhardt
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 127 - 137
  • [33] Interactive visual exploration and refinement of cluster assignments
    Michael Kern
    Alexander Lex
    Nils Gehlenborg
    Chris R. Johnson
    BMC Bioinformatics, 18
  • [34] A Tool for Subjective and Interactive Visual Data Exploration
    Kang, Bo
    Puolamaki, Kai
    Lijffijt, Jefrey
    De Bie, Tijl
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2016, PT III, 2016, 9853 : 3 - 7
  • [35] Interactive visual queries for multivariate graphs exploration
    Shamir, Ariel
    Stolpnik, Alla
    COMPUTERS & GRAPHICS-UK, 2012, 36 (04): : 257 - 264
  • [36] Interactive visual exploration of surgical process data
    Mayer, Benedikt
    Meuschke, Monique
    Chen, Jimmy
    Muller-Stich, Beat P.
    Wagner, Martin
    Preim, Bernhard
    Engelhardt, Sandy
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (01) : 127 - 137
  • [37] Interactive framework for the visual exploration of colonic data
    Males, Jan
    Monclus, Eva
    Diaz, Jose
    Navazo, Isabel
    Vazquez, Pere-Pau
    COMPUTERS & GRAPHICS-UK, 2020, 91 : 39 - 51
  • [38] Toward visual interactive exploration of heterogeneous graphs
    Burger, Irène
    Manolescu, Ioana
    Pietriga, Emmanuel
    Suchanek, Fabian
    CEUR Workshop Proceedings, 2020, 2578
  • [39] MIME: A Framework for Interactive Visual Pattern Mining
    Goethals, Bart
    Moens, Sandy
    Vreeken, Jilles
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2011, 6913 : 634 - 637
  • [40] Interactive Pattern Exploration: Securely Mining Distributed Databases
    Chawla, Priya
    Bhatnagar, Raj
    Han, Chia
    Human Interface and the Management of Information: Information, Design and Interaction, Pt I, 2016, 9734 : 229 - 237