Regression Cube: A Technique for Multidimensional Visual Exploration and Interactive Pattern Finding

被引:11
|
作者
Chan, Yu-Hsuan [1 ]
Correa, Carlos D. [2 ]
Ma, Kwan-Liu [1 ]
机构
[1] Univ Calif Davis, Davis, CA 95616 USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
Visualization; scatterplot; sensitivity analysis; interactions; pattern discovery; data transformation; model fitting; multidimensional data visualization;
D O I
10.1145/2590349
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scatterplots are commonly used to visualize multidimensional data; however, 2D projections of data offer limited understanding of the high-dimensional interactions between data points. We introduce an interactive 3D extension of scatterplots called the Regression Cube (RC), which augments a 3D scatterplot with three facets on which the correlations between the two variables are revealed by sensitivity lines and sensitivity streamlines. The sensitivity visualization of local regression on the 2D projections provides insights about the shape of the data through its orientation and continuity cues. We also introduce a series of visual operations such as clustering, brushing, and selection supported in RC. By iteratively refining the selection of data points of interest, RC is able to reveal salient local correlation patterns that may otherwise remain hidden with a global analysis. We have demonstrated our system with two examples and a user-oriented evaluation, and we show how RCs enable interactive visual exploration of multidimensional datasets via a variety of classification and information retrieval tasks. A video demo of RC is available.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] DataScope: Interactive Visual Exploratory Dashboards For Large Multidimensional Data
    Iyer, Ganesh
    DuttaDuwarah, Sapoonjyoti
    Sharma, Ashish
    2017 IEEE WORKSHOP ON VISUAL ANALYTICS IN HEALTHCARE (VAHC), 2017, : 17 - 23
  • [42] VANLO - Interactive visual exploration of aligned biological networks
    Steffen Brasch
    Lars Linsen
    Georg Fuellen
    BMC Bioinformatics, 10
  • [43] Visual interactive exploration and clustering of brain fiber tracts
    Chaoqing Xu
    Yi-Peng Liu
    Zhechen Jiang
    Guodao Sun
    Li Jiang
    Ronghua Liang
    Journal of Visualization, 2020, 23 : 491 - 506
  • [44] Interactive Visual Exploration and Comparison on the Effect of Asteroid Impacts
    Liu, Can
    Li, Yanda
    Yang, Changhe
    Yuan, Xiaoru
    2018 IEEE SCIENTIFIC VISUALIZATION CONFERENCE (SCIVIS), 2018, : 121 - 122
  • [45] Interactive visual analysis and exploration of injection systems simulations
    Matkovic, K
    Jelovic, M
    Juric, J
    Konyha, Z
    Gracanin, D
    IEEE Visualization 2005, Proceedings, 2005, : 391 - 398
  • [46] Supporting Visual Data Exploration via Interactive Constraints
    Lucas, Wendy
    Gordon, Taylor
    SOFTWARE TECHNOLOGIES, 2017, 743 : 132 - 152
  • [47] ExPlates: Spatializing Interactive Analysis to Scaffold Visual Exploration
    Javed, W.
    Elmqvist, N.
    COMPUTER GRAPHICS FORUM, 2013, 32 (03) : 441 - 450
  • [48] AverageExplorer: Interactive Exploration and Alignment of Visual Data Collections
    Zhu, Jun-Yan
    Lee, Yong Jae
    Efros, Alexei A.
    ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (04):
  • [49] PivotViz: Interactive Visual Analysis of Multidimensional Library Transaction Data
    Nielsen, Matthias
    Gronbaek, Kaj
    PROCEEDINGS OF THE 15TH ACM/IEEE-CS JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL'15), 2015, : 139 - 142
  • [50] Visual text analysis: Interactive exploration of semantic contents
    Rohrdantz C.
    Koch S.
    Jochim C.
    Heyer G.
    Scheuermann G.
    Ertl T.
    Schütze H.
    Keim D.A.
    Informatik-Spektrum, 2010, 33 (06) : 601 - 611