HyperNP: Interactive Visual Exploration of Multidimensional Projection Hyperparameters

被引:2
|
作者
Appleby, G. [1 ]
Espadoto, M. [2 ,3 ]
Chen, R. [1 ]
Goree, S. [4 ]
Telea, A. C. [3 ]
Anderson, E. W. [5 ]
Chang, R. [1 ]
机构
[1] Tufts Univ, Dept Comp Sci, Medford, MA 02155 USA
[2] Univ Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
[3] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
[4] Indiana Univ, Luddy Sch Informat Comp & Engn, Bloomington, IN 47405 USA
[5] Novartis, Novartis AI Innovat Ctr, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
DIMENSIONALITY REDUCTION; QUALITY;
D O I
10.1111/cgf.14531
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Projection algorithms such as t-SNE or UMAP are useful for the visualization of high dimensional data, but depend on hyperparameters which must be tuned carefully. Unfortunately, iteratively recomputing projections to find the optimal hyperparameter values is computationally intensive and unintuitive due to the stochastic nature of such methods. In this paper we propose HyperNP, a scalable method that allows for real-time interactive hyperparameter exploration of projection methods by training neural network approximations. A HyperNP model can be trained on a fraction of the total data instances and hyperparameter configurations that one would like to investigate and can compute projections for new data and hyperparameters at interactive speeds. HyperNP models are compact in size and fast to compute, thus allowing them to be embedded in lightweight visualization systems. We evaluate the performance of HyperNP across three datasets in terms of performance and speed. The results suggest that HyperNP models are accurate, scalable, interactive, and appropriate for use in real-world settings.
引用
收藏
页码:169 / 181
页数:13
相关论文
共 50 条
  • [1] Multidimensional data visual exploration by interactive information segments
    Ferrer-Troyano, FJ
    Aguilar-Ruiz, JS
    Riquelme, JC
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2004, 3181 : 239 - 248
  • [2] Interactive visual exploration of multidimensional data: Requirements for CommonGIS with OLAP
    Voss, A
    Hernandez, V
    Voss, H
    Scheider, S
    15TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2004, : 883 - 887
  • [3] Regression Cube: A Technique for Multidimensional Visual Exploration and Interactive Pattern Finding
    Chan, Yu-Hsuan
    Correa, Carlos D.
    Ma, Kwan-Liu
    ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2014, 4 (01)
  • [4] MultiClusterTree: Interactive Visual Exploration of Hierarchical Clusters in Multidimensional Multivariate Data
    Van Long, Tran
    Linsen, Lars
    COMPUTER GRAPHICS FORUM, 2009, 28 (03) : 823 - 830
  • [5] Feedback-Driven Interactive Exploration of Large Multidimensional Data Supported by Visual Classifier
    Behrisch, Michael
    Korkmaz, Fatih
    Shao, Lin
    Schreck, Tobias
    2014 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2014, : 43 - 52
  • [6] IsoCam: Interactive Visual Exploration of Massive Cultural Heritage Models on Large Projection Setups
    Marton, Fabio
    Rodriguez, Marcos Balsa
    Bettio, Fabio
    Agus, Marco
    Villanueva, Alberto Jaspe
    Gobbetti, Enrico
    ACM JOURNAL ON COMPUTING AND CULTURAL HERITAGE, 2014, 7 (02):
  • [7] Interactive visual exploration and analysis
    Weber, Gunther H.
    Hauser, Helwig
    Mathematics and Visualization, 2014, 37 : 161 - 173
  • [8] Interactive Visual Summarization of Multidimensional Data
    Kocherlakota, Sarat M.
    Healey, Christopher G.
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 362 - +
  • [9] VISUALIZATION AND INTERACTIVE EXPLORATION OF MULTIDIMENSIONAL CONFOCAL IMAGES
    SAMARABANDU, JK
    ACHARYA, R
    CHENG, PC
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 1993, 17 (03) : 183 - 188
  • [10] Dimension Projection Matrix/Tree: Interactive Subspace Visual Exploration and Analysis of High Dimensional Data
    Yuan, Xiaoru
    Ren, Donghao
    Wang, Zuchao
    Guo, Cong
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) : 2625 - 2633