Dimension Projection Matrix/Tree: Interactive Subspace Visual Exploration and Analysis of High Dimensional Data

被引:74
|
作者
Yuan, Xiaoru [1 ,2 ]
Ren, Donghao [1 ,2 ]
Wang, Zuchao [1 ,2 ]
Guo, Cong [1 ,2 ]
机构
[1] Peking Univ, Minist Educ, Key Lab Machine Percept, Beijing 100871, Peoples R China
[2] Peking Univ, Sch EECS, Beijing 100871, Peoples R China
关键词
High dimensional data; hierarchical visualization; sub-dimensional space; user interaction; subspace; tree; matrix;
D O I
10.1109/TVCG.2013.150
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For high-dimensional data, this work proposes two novel visual exploration methods to gain insights into the data aspect and the dimension aspect of the data. The first is a Dimension Projection Matrix, as an extension of a scatterplot matrix. In the matrix, each row or column represents a group of dimensions, and each cell shows a dimension projection (such as MDS) of the data with the corresponding dimensions. The second is a Dimension Projection Tree, where every node is either a dimension projection plot or a Dimension Projection Matrix. Nodes are connected with links and each child node in the tree covers a subset of the parent node's dimensions or a subset of the parent node's data items. While the tree nodes visualize the subspaces of dimensions or subsets of the data items under exploration, the matrix nodes enable cross-comparison between different combinations of subspaces. Both Dimension Projection Matrix and Dimension Project Tree can be constructed algorithmically through automation, or manually through user interaction. Our implementation enables interactions such as drilling down to explore different levels of the data, merging or splitting the subspaces to adjust the matrix, and applying brushing to select data clusters. Our method enables simultaneously exploring data correlation and dimension correlation for data with high dimensions.
引用
收藏
页码:2625 / 2633
页数:9
相关论文
共 50 条
  • [1] Dimension Reconstruction for Visual Exploration of Subspace Clusters in High-dimensional Data
    Zhou, Fangfang
    Li, Juncai
    Huang, Wei
    Zhao, Ying
    Yuan, Xiaoru
    Liang, Xing
    Shi, Yang
    [J]. 2016 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2016, : 128 - 135
  • [2] Interactive Exploration of Subspace Clusters for High Dimensional Data
    Kristensen, Jesper
    Mai, Son T.
    Assent, Ira
    Jacobsen, Jon
    Bay Vo
    Anh Le
    [J]. DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2017, PT I, 2017, 10438 : 327 - 342
  • [3] Visual Exploration of High-Dimensional Data through Subspace Analysis and Dynamic Projections
    Liu, S.
    Wang, B.
    Thiagarajan, J. J.
    Bremer, P. -T.
    Pascucci, V.
    [J]. COMPUTER GRAPHICS FORUM, 2015, 34 (03) : 271 - 280
  • [4] Targeted projection pursuit for interactive exploration of high-dimensional data sets
    Faith, Joe
    [J]. 11TH INTERNATIONAL CONFERENCE INFORMATION VISUALIZATION, 2007, : 286 - 292
  • [5] Classifying high dimensional data by interactive visual analysis
    Zhang, Ke-Bing
    Orgun, Mehmet. A.
    Shankaran, Rajan
    Zhang, Du
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2016, 33 : 24 - 36
  • [6] Mapper Interactive: A Scalable, Extendable, and Interactive Toolbox for the Visual Exploration of High-Dimensional Data
    Zhou, Youjia
    Chalapathi, Nithin
    Rathore, Archit
    Zhao, Yaodong
    Wang, Bei
    [J]. 2021 IEEE 14TH PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS 2021), 2021, : 101 - 110
  • [7] A visual language for Interactive Data Exploration and Analysis
    Selfridge, P
    Srivastava, D
    [J]. IEEE SYMPOSIUM ON VISUAL LANGUAGES, PROCEEDINGS, 1996, : 84 - 85
  • [8] Multiscale scatterplot matrix for visual and interactive exploration of metabonomic data
    Jourdan, Fabien
    Paris, Alain
    Koenig, Pierre-Yves
    Melancon, Guy
    [J]. PIXELIZATION PARADIGM, 2007, 4370 : 202 - 215
  • [9] Maximum Margin Projection Subspace Learning for Visual Data Analysis
    Nikitidis, Symeon
    Tefas, Anastasios
    Pitas, Ioannis
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (10) : 4413 - 4425
  • [10] High-dimensional data analysis with subspace comparison using matrix visualization
    Wang, Junpeng
    Liu, Xiaotong
    Shen, Han-Wei
    [J]. INFORMATION VISUALIZATION, 2019, 18 (01) : 94 - 109