AVIST: A GPU-Centric Design for Visual Exploration of Large Multidimensional Datasets

被引:1
|
作者
Mi, Peng [1 ]
Sun, Maoyuan [2 ]
Masiane, Moeti [1 ]
Cao, Yong [3 ]
North, Chris [1 ]
机构
[1] Virginia Tech, Comp Sci Dept, Blacksburg, VA 24060 USA
[2] Univ Massachusetts, Dept Comp & Informat Sci, Dartmouth, MA 02747 USA
[3] Boeing Co, 3455 Airframe Dr, N Charleston, SC 29418 USA
来源
INFORMATICS-BASEL | 2016年 / 3卷 / 04期
基金
美国国家科学基金会;
关键词
big data; interactive data exploration and discovery; multidimensional dataset; GPU;
D O I
10.3390/informatics3040018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents the Animated VISualization Tool (AVIST), an exploration-oriented data visualization tool that enables rapidly exploring and filtering large time series multidimensional datasets. AVIST highlights interactive data exploration by revealing fine data details. This is achieved through the use of animation and cross-filtering interactions. To support interactive exploration of big data, AVIST features a GPU (Graphics Processing Unit)-centric design. Two key aspects are emphasized on the GPU-centric design: (1) both data management and computation are implemented on the GPU to leverage its parallel computing capability and fast memory bandwidth; (2) a GPU-based directed acyclic graph is proposed to characterize data transformations triggered by users' demands. Moreover, we implement AVIST based on the Model-View-Controller (MVC) architecture. In the implementation, we consider two aspects: (1) user interaction is highlighted to slice big data into small data; and (2) data transformation is based on parallel computing. Two case studies demonstrate how AVIST can help analysts identify abnormal behaviors and infer new hypotheses by exploring big datasets. Finally, we summarize lessons learned about GPU-based solutions in interactive information visualization with big data.
引用
收藏
页数:20
相关论文
共 8 条
  • [1] Similarity-based visual exploration of very large georeferenced multidimensional datasets
    Peralta-Aranibar, Roger
    Pahins, Cicero A. L.
    Comba, Joao L. D.
    Gomez-Nieto, Erick
    [J]. SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 683 - 686
  • [2] Gaussian Cubes: Real-Time Modeling for Visual Exploration of Large Multidimensional Datasets
    Wang, Zhe
    Ferreira, Nivan
    Wei, Youhao
    Bhaskar, Aarthy Sankari
    Scheidegger, Carlos
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) : 681 - 690
  • [3] Visual exploration of data by using multidimensional scaling on multicore CPU, GPU, and MPI cluster
    Pawliczek, Piotr
    Dzwinel, Witold
    Yuen, David A.
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2014, 26 (03): : 662 - 682
  • [4] Interactive Exploration of Large-Scale UI Datasets with Design Maps
    Leiva, Luis A.
    Hota, Asutosh
    Oulasvirta, Antti
    [J]. INTERACTING WITH COMPUTERS, 2020, 32 (5-6) : 490 - 509
  • [5] SwiftTuna: Responsive and Incremental Visual Exploration of Large-scale Multidimensional Data
    Jo, Jaemin
    Kim, Wonjae
    Yoo, Seunghoon
    Kim, Bohyoung
    Seo, Jinwook
    [J]. 2017 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2017, : 131 - 140
  • [6] GeoLens: Enabling Interactive Visual Analytics over Large-scale, Multidimensional Geospatial Datasets
    Koontz, Jared
    Malensek, Matthew
    Pallickara, Sangmi Lee
    [J]. 2014 IEEE/ACM INTERNATIONAL SYMPOSIUM ON BIG DATA COMPUTING (BDC), 2014, : 35 - 44
  • [7] Dream Lens: Exploration and Visualization of Large-Scale Generative Design Datasets
    Matejka, Justin
    Glueck, Michael
    Bradner, Erin
    Hashemi, Ali
    Grossman, Tovi
    Fitzmaurice, George
    [J]. PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), 2018,
  • [8] Feedback-Driven Interactive Exploration of Large Multidimensional Data Supported by Visual Classifier
    Behrisch, Michael
    Korkmaz, Fatih
    Shao, Lin
    Schreck, Tobias
    [J]. 2014 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2014, : 43 - 52