Z2Z4-Additive Cyclic Codes, Generator Polynomials, and Dual Codes

被引:44
|
作者
Borges, Joaquim [1 ]
Fernandez-Cordoba, Cristina [1 ]
Ten-Valls, Roger [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Informat & Commun Engn, E-08193 Barcelona, Spain
关键词
Binary cyclic codes; cyclic codes over Z(4); duality; Z(2)Z(4)-additive cyclic codes; Z(4);
D O I
10.1109/TIT.2016.2611528
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Z(2)Z(4)-additive code C subset of Z(2)(alpha) x Z(4)(beta) is called cyclic if the set of coordinates can be partitioned into two subsets, the set of Z(2) and the set of Z(4) coordinates, such that any cyclic shift of the coordinates of both subsets leaves the code invariant. These codes can be identified as submodules of the Z(4)[x]-module Z(2)[x]/(x(alpha) - 1) x Z(4)[x]/(x(beta) - 1). The parameters of a Z(2)Z(4)-additive cyclic code are stated in terms of the degrees of the generator polynomials of the code. The generator polynomials of the dual code of a Z(2)Z(4)-additive cyclic code are determined in terms of the generator polynomials of the code C.
引用
收藏
页码:6348 / 6354
页数:7
相关论文
共 50 条
  • [31] A note on cyclic codes over Z(4)
    Bandi, Rama Krishna
    Bhaintwal, Maheshanand
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (01)
  • [32] Reversible cyclic codes over Z(4)
    Abualrub, Taher
    Siap, Irfan
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2007, 38 : 195 - 205
  • [33] Self-Dual Cyclic Codes over Z4[u]/⟨u2-1⟩ and Their Applications of Z4-Self-Dual Codes Construction
    Gao, Yun
    Gao, Jian
    Fu, Fang-Wei
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (10) : 1724 - 1729
  • [34] CYCLIC CODES OF LENGTH 2(n) OVER Z(4)
    Woo, Sung Sik
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (01): : 39 - 54
  • [35] Z2Z2[u]-Cyclic and Constacyclic Codes
    Aydogdu, Ismail
    Abualrub, Taher
    Siap, Irfan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (08) : 4883 - 4893
  • [36] Z2-double cyclic codes
    Borges, Joaquim
    Fernandez-Cordoba, Cristina
    Ten-Valls, Roger
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (03) : 463 - 479
  • [37] Z2[u]Z2[u]-Additive codes
    Shashirekha, G.
    Bhatta, G. R. Vadiraja
    Poojary, Prasanna
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [38] ON Z4Z4[u3]-ADDITIVE CONSTACYCLIC CODES
    Prakash, Om
    Yadav, Shikha
    Islam, Habibul
    Sole, Patrick
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (01) : 246 - 261
  • [39] On double cyclic codes over Z4
    Gao, Jian
    Shi, Minjia
    Wu, Tingting
    Fu, Fang-Wei
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 39 : 233 - 250
  • [40] Negacyclic and cyclic codes over Z4
    Wolfmann, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2527 - 2532