On double cyclic codes over Z4

被引:43
|
作者
Gao, Jian [1 ]
Shi, Minjia [2 ,3 ,4 ]
Wu, Tingting [5 ,6 ]
Fu, Fang-Wei [5 ,6 ]
机构
[1] Shandong Univ Technol, Sch Sci, Zibo 255091, Peoples R China
[2] Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Peoples R China
[3] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[4] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China
[5] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[6] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Double cyclic codes; Generator polynomials; Minimal generating sets; Good nonlinear binary codes; STRUCTURAL-PROPERTIES;
D O I
10.1016/j.ffa.2016.02.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R = Z(4) be the integer ring mod 4. A double cyclic code of length (r, s) over R is a set that can be partitioned into two parts that any cyclic shift of the coordinates of both parts leaves invariant the code. These codes can be viewed as R[x]-submodules of R[x]/(x(r) - 1) x R[x]/(x(s) - 1). In this paper, we determine the generator polynomials of this family of codes as R[x]-submodules of R[x]/(x(r) - 1) x R[x]/(x(s) - 1). Further, we also give the minimal generating sets of this family of codes as R-submodules of R[x]/(x(r) - 1) x R[x]/(x(s) - 1). Some optimal or suboptimal nonlinear binary codes are obtained from this family of codes. Finally, we determine the relationship of generators between the double cyclic code and its dual. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:233 / 250
页数:18
相关论文
共 50 条
  • [1] Skew cyclic codes over Z4
    Suprijanto, Djoko
    Tang, Hopein Christofen
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [2] Negacyclic and cyclic codes over Z4
    Wolfmann, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2527 - 2532
  • [3] Hulls of cyclic codes over Z4
    Jitman, Somphong
    Sangwisut, Ekkasit
    Udomkavanich, Patanee
    [J]. DISCRETE MATHEMATICS, 2020, 343 (0I)
  • [4] Codes over Z4 + νZ4
    Bandi, Rama Krishna
    Bhaintwal, Maheshanand
    [J]. 2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 422 - 427
  • [5] Binary images of cyclic codes over Z4
    Wolfmann, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (05) : 1773 - 1779
  • [6] Cyclic codes over a linear companion of Z4
    Udaya, P
    Bonnecaze, A
    [J]. 1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 398 - 398
  • [7] Reversible complement cyclic codes over Z4
    Klin-Earn, Chakkrid
    Sriwirach, Wateekorn
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (07)
  • [8] Cyclic codes over Z4 of even length
    Dougherty, ST
    Ling, S
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2006, 39 (02) : 127 - 153
  • [9] Cyclic codes of even length over Z4
    Woo, Sung Sik
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (03) : 697 - 706
  • [10] Cyclic codes over Z4 + uZ4
    Bandi, Rama Krishna
    Bhaintwal, Maheshanand
    [J]. 2015 SEVENTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2015, : 47 - 51