On double cyclic codes over Z4

被引:44
|
作者
Gao, Jian [1 ]
Shi, Minjia [2 ,3 ,4 ]
Wu, Tingting [5 ,6 ]
Fu, Fang-Wei [5 ,6 ]
机构
[1] Shandong Univ Technol, Sch Sci, Zibo 255091, Peoples R China
[2] Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Peoples R China
[3] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[4] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China
[5] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[6] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Double cyclic codes; Generator polynomials; Minimal generating sets; Good nonlinear binary codes; STRUCTURAL-PROPERTIES;
D O I
10.1016/j.ffa.2016.02.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R = Z(4) be the integer ring mod 4. A double cyclic code of length (r, s) over R is a set that can be partitioned into two parts that any cyclic shift of the coordinates of both parts leaves invariant the code. These codes can be viewed as R[x]-submodules of R[x]/(x(r) - 1) x R[x]/(x(s) - 1). In this paper, we determine the generator polynomials of this family of codes as R[x]-submodules of R[x]/(x(r) - 1) x R[x]/(x(s) - 1). Further, we also give the minimal generating sets of this family of codes as R-submodules of R[x]/(x(r) - 1) x R[x]/(x(s) - 1). Some optimal or suboptimal nonlinear binary codes are obtained from this family of codes. Finally, we determine the relationship of generators between the double cyclic code and its dual. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:233 / 250
页数:18
相关论文
共 50 条
  • [21] Cyclic codes of odd length over Z4 [u] / ⟨uk⟩
    Cao, Yuan
    Li, Qingguo
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (05): : 599 - 624
  • [22] Cyclic codes of length 2e over Z4
    Abualrub, T
    Oehmke, R
    [J]. DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) : 3 - 9
  • [23] Shadow codes over Z4
    Dougherty, ST
    Harada, M
    Solé, P
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2001, 7 (04) : 507 - 529
  • [24] Quasi-cyclic codes over Z4 and some new binary codes
    Aydin, N
    Ray-Chaudhuri, DK
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (07) : 2065 - 2069
  • [25] Cyclic codes over Z4 + uZ4 + u2Z4
    Ozen, Mehmet
    Ozzaim, Nazmiye Tugba
    Aydin, Nuh
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (05) : 1235 - 1247
  • [26] Self-dual Cyclic Codes Over Z4 + uZ4
    Luo, Rong
    Parampalli, Udaya
    [J]. 2015 SEVENTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2015, : 65 - 69
  • [27] Cyclic codes over Z4 with good parameters considering Lee weight
    Encheva, S
    Kohno, R
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1998, E81A (03) : 507 - 509
  • [28] On the distances of cyclic codes of length 2e over Z4
    Kai, Xiaoshan
    Zhu, Shixin
    [J]. DISCRETE MATHEMATICS, 2010, 310 (01) : 12 - 20
  • [29] *Self-Dual Cyclic Codes over Z4 + uZ4
    Luo, Rong
    Parampalli, Udaya
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (04) : 969 - 974
  • [30] Generalized BCH codes over Z4
    Yue, DW
    Qian, XR
    Dong, H
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2000, 9 (02): : 159 - 162