Z2Z4-Additive Cyclic Codes, Generator Polynomials, and Dual Codes

被引:44
|
作者
Borges, Joaquim [1 ]
Fernandez-Cordoba, Cristina [1 ]
Ten-Valls, Roger [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Informat & Commun Engn, E-08193 Barcelona, Spain
关键词
Binary cyclic codes; cyclic codes over Z(4); duality; Z(2)Z(4)-additive cyclic codes; Z(4);
D O I
10.1109/TIT.2016.2611528
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Z(2)Z(4)-additive code C subset of Z(2)(alpha) x Z(4)(beta) is called cyclic if the set of coordinates can be partitioned into two subsets, the set of Z(2) and the set of Z(4) coordinates, such that any cyclic shift of the coordinates of both subsets leaves the code invariant. These codes can be identified as submodules of the Z(4)[x]-module Z(2)[x]/(x(alpha) - 1) x Z(4)[x]/(x(beta) - 1). The parameters of a Z(2)Z(4)-additive cyclic code are stated in terms of the degrees of the generator polynomials of the code. The generator polynomials of the dual code of a Z(2)Z(4)-additive cyclic code are determined in terms of the generator polynomials of the code C.
引用
下载
收藏
页码:6348 / 6354
页数:7
相关论文
共 50 条
  • [21] The structure of Z(2)Z(2)s-additive cyclic codes
    Aydogdu, Ismail
    Abualrub, Taher
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (04)
  • [22] Counting Z2Z4Z8-additive codes
    Caliskan, Basri
    Balikci, Kemal
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (02): : 668 - 679
  • [23] On Z2Z2[u]Z2[u, v]-additive cyclic codes and their application in obtaining optimal codes
    Ashraf, Mohammad
    Asim, Mohd
    Mohammad, Ghulam
    Rehman, Washiqur
    Khan, Naim
    FILOMAT, 2024, 38 (08) : 2899 - 2914
  • [24] Quantum codes from Z2Z2[u]/⟨u4⟩-cyclic codes
    Biswas, Soumak
    Bhaintwal, Maheshanand
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (02) : 343 - 366
  • [25] Z2Z4-linear codes: generator matrices and duality
    Borges, J.
    Fernandez-Cordoba, C.
    Pujol, J.
    Rifa, J.
    Villanueva, M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (02) : 167 - 179
  • [26] Additive Codes over Z2 x Z4
    Borges, Joaquim
    Fernandez-Cordoba, Cristina
    Dougherty, Steven T.
    2010 IEEE INFORMATION THEORY WORKSHOP (ITW), 2010,
  • [27] Cyclic codes and quadratic residue codes over Z(4)
    Pless, VS
    Qian, ZQ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (05) : 1594 - 1600
  • [28] Cyclic codes over Z(4), locator polynomials, and Newton's identities
    Calderbank, AR
    McGuire, G
    Kumar, V
    Helleseth, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (01) : 217 - 226
  • [29] Cyclic self dual codes of length pq over Z 4
    Jain, Sonal
    Batra, Sudhir
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08): : 2305 - 2319
  • [30] Z2Z2[u4]-cyclic codes and their duals
    Srinivasulu, B.
    Seneviratne, Padmapani
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):