A Z(2)Z(4)-additive code C subset of Z(2)(alpha) x Z(4)(beta) is called cyclic if the set of coordinates can be partitioned into two subsets, the set of Z(2) and the set of Z(4) coordinates, such that any cyclic shift of the coordinates of both subsets leaves the code invariant. These codes can be identified as submodules of the Z(4)[x]-module Z(2)[x]/(x(alpha) - 1) x Z(4)[x]/(x(beta) - 1). The parameters of a Z(2)Z(4)-additive cyclic code are stated in terms of the degrees of the generator polynomials of the code. The generator polynomials of the dual code of a Z(2)Z(4)-additive cyclic code are determined in terms of the generator polynomials of the code C.
机构:Univ Nacl Autonoma Mexico, Direcc Gen Serv Computo Acad, Mexico City 04510, DF, Mexico
Vega, G
Wolfmann, J
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Direcc Gen Serv Computo Acad, Mexico City 04510, DF, MexicoUniv Nacl Autonoma Mexico, Direcc Gen Serv Computo Acad, Mexico City 04510, DF, Mexico
机构:
Inst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Grp, Jl Ganesha 10, Bandung 40132, IndonesiaInst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Grp, Jl Ganesha 10, Bandung 40132, Indonesia
Suprijanto, Djoko
Tang, Hopein Christofen
论文数: 0引用数: 0
h-index: 0
机构:
Inst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Grp, Jl Ganesha 10, Bandung 40132, Indonesia
UNSW, Sch Math & Stat, Sydney, NSW, AustraliaInst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Grp, Jl Ganesha 10, Bandung 40132, Indonesia