Z2Z4-Additive Cyclic Codes, Generator Polynomials, and Dual Codes

被引:44
|
作者
Borges, Joaquim [1 ]
Fernandez-Cordoba, Cristina [1 ]
Ten-Valls, Roger [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Informat & Commun Engn, E-08193 Barcelona, Spain
关键词
Binary cyclic codes; cyclic codes over Z(4); duality; Z(2)Z(4)-additive cyclic codes; Z(4);
D O I
10.1109/TIT.2016.2611528
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Z(2)Z(4)-additive code C subset of Z(2)(alpha) x Z(4)(beta) is called cyclic if the set of coordinates can be partitioned into two subsets, the set of Z(2) and the set of Z(4) coordinates, such that any cyclic shift of the coordinates of both subsets leaves the code invariant. These codes can be identified as submodules of the Z(4)[x]-module Z(2)[x]/(x(alpha) - 1) x Z(4)[x]/(x(beta) - 1). The parameters of a Z(2)Z(4)-additive cyclic code are stated in terms of the degrees of the generator polynomials of the code. The generator polynomials of the dual code of a Z(2)Z(4)-additive cyclic code are determined in terms of the generator polynomials of the code C.
引用
下载
收藏
页码:6348 / 6354
页数:7
相关论文
共 50 条
  • [1] Z2Z4-Additive Cyclic Codes
    Abualrub, Taher
    Siap, Irfan
    Aydin, Nuh
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (03) : 1508 - 1514
  • [2] On Z2Z4-additive complementary dual codes and related LCD codes
    Benbelkacem, N.
    Borges, J.
    Dougherty, S. T.
    Fernandez-Cordoba, C.
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 62
  • [3] Binary Images of Z2Z4-Additive Cyclic Codes
    Borges, Joaquim
    Dougherty, Steven T.
    Fernandez-Cordoba, Cristina
    Ten-Valls, Roger
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (12) : 7551 - 7556
  • [4] Z2Z4-Additive Cyclic Codes: Kernel and Rank
    Borges, Joaquim
    Dougherty, Steven T.
    Fernandez-Cordoba, Cristina
    Ten-Valls, Roger
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2119 - 2127
  • [5] Z2Z4-Additive Quasi-Cyclic Codes
    Shi, Minjia
    Li, Shitao
    Sole, Patrick
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (11) : 7232 - 7239
  • [6] Counting Z2Z4-Additive Codes
    Dougherty, Steven T.
    Salturk, Esengul
    NONCOMMUTATIVE RINGS AND THEIR APPLICATIONS, 2015, 634 : 137 - 147
  • [7] Z2Z4-Additive formally self-dual codes
    Dougherty, S. T.
    Fernandez-Cordoba, C.
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (02) : 435 - 453
  • [8] On the intersection of Z2Z4-additive perfect codes
    Rifa, Josep
    Solov'eva, Faina Ivanovna
    Villanueva, Merce
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (03) : 1346 - 1356
  • [9] On the Intersection of Z2Z4-Additive Hadamard Codes
    Rifa, Josep
    Solov'eva, Faina I.
    Villanueva, Merce
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (04) : 1766 - 1774
  • [10] Z2Z4-ADDITIVE PERFECT CODES IN STEGANOGRAPHY
    Rifa-Pous, Helena
    Rifa, Josep
    Ronquillo, Lorena
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2011, 5 (03) : 425 - 433