Z2Z4-Additive Cyclic Codes: Kernel and Rank

被引:3
|
作者
Borges, Joaquim [1 ]
Dougherty, Steven T. [2 ]
Fernandez-Cordoba, Cristina [1 ]
Ten-Valls, Roger [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Informat & Commun Engn, Bellaterra 08193, Spain
[2] Univ Scranton, Dept Math, Scranton, PA 18510 USA
关键词
Z(2)Z(4)-additive cyclic codes; Gray map; kernel; rank;
D O I
10.1109/TIT.2018.2870891
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Z(2)Z(4)-additive code C subset of Z(2)(alpha) x Z(4)(beta) is called cyclic if the set of coordinates can be partitioned into two subsets, the set of Z(2) coordinates and the set of Z(4) coordinates, such that any cyclic shift of the coordinates of both subsets leaves the code invariant. Let Phi(C) be the binary Gray map image of C. We study the rank and the dimension of the kernel of a Z(2)Z(4)-additive cyclic code C, that is, the dimensions of the binary linear codes <Phi(C)> and ker (Phi(C)). We give upper and lower bounds for these parameters. It is known that the codes <Phi (C)> and ker(Phi (C)) are binary images of Z(2)Z(4)-additive codes that we denote by R(C) and K(C), respectively. Moreover, we show that R(C) and K(C) are also cyclic and determine the generator polynomials of these codes in terms of the generator polynomials of the code C.
引用
收藏
页码:2119 / 2127
页数:9
相关论文
共 50 条
  • [1] Z2Z4-Additive Cyclic Codes
    Abualrub, Taher
    Siap, Irfan
    Aydin, Nuh
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (03) : 1508 - 1514
  • [2] Binary Images of Z2Z4-Additive Cyclic Codes
    Borges, Joaquim
    Dougherty, Steven T.
    Fernandez-Cordoba, Cristina
    Ten-Valls, Roger
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (12) : 7551 - 7556
  • [3] Z2Z4-Additive Quasi-Cyclic Codes
    Shi, Minjia
    Li, Shitao
    Sole, Patrick
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (11) : 7232 - 7239
  • [4] Z2Z4-Additive Cyclic Codes, Generator Polynomials, and Dual Codes
    Borges, Joaquim
    Fernandez-Cordoba, Cristina
    Ten-Valls, Roger
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) : 6348 - 6354
  • [5] Counting Z2Z4-Additive Codes
    Dougherty, Steven T.
    Salturk, Esengul
    [J]. NONCOMMUTATIVE RINGS AND THEIR APPLICATIONS, 2015, 634 : 137 - 147
  • [6] On the intersection of Z2Z4-additive perfect codes
    Rifa, Josep
    Solov'eva, Faina Ivanovna
    Villanueva, Merce
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (03) : 1346 - 1356
  • [7] On the Intersection of Z2Z4-Additive Hadamard Codes
    Rifa, Josep
    Solov'eva, Faina I.
    Villanueva, Merce
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (04) : 1766 - 1774
  • [8] Z2Z4-ADDITIVE PERFECT CODES IN STEGANOGRAPHY
    Rifa-Pous, Helena
    Rifa, Josep
    Ronquillo, Lorena
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2011, 5 (03) : 425 - 433
  • [9] On Z2Z4-additive polycyclic codes and their Gray images
    Wu, Rongsheng
    Shi, Minjia
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (11) : 2551 - 2562
  • [10] On Z2Z4-additive complementary dual codes and related LCD codes
    Benbelkacem, N.
    Borges, J.
    Dougherty, S. T.
    Fernandez-Cordoba, C.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2020, 62 (62)