C2 quadratic trigonometric polynomial curves with local bias

被引:16
|
作者
Han, XL [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Peoples R China
关键词
curve representations; trigonometric polynomial; shape parameter; B-spline curve;
D O I
10.1016/j.cam.2004.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quadratic trigonometric polynomial curves with local bias are presented in this paper. The quadratic trigonometric polynomial curves have C-2 continuity with a non-uniform knot vector and any value of the bias, while the quadratic B-spline curves have C-1 continuity. The changes of a local bias parameter will only affect two curve segments. With the bias parameters, the quadratic trigonometric polynomial curves can move locally toward or against a control vertex. A quadratic trigonometric Bezier curve is also introduced as special case of the given trigonometric polynomial curves. © 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:161 / 172
页数:12
相关论文
共 50 条
  • [31] Uniform trigonometric polynomial B-spline curves
    Lü, YG
    Wang, GZ
    Yang, XN
    SCIENCE IN CHINA SERIES F, 2002, 45 (05): : 335 - 343
  • [32] Uniform trigonometric polynomial B-spline curves
    吕勇刚
    汪国昭
    杨勋年
    ScienceinChina(SeriesF:InformationSciences), 2002, (05) : 335 - 343
  • [33] Quadratic trigonometric spline curves with multiple shape parameters
    Wu, Xiaoqin
    Han, Xuli
    Luo, Shanmin
    PROCEEDINGS OF 2007 10TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN AND COMPUTER GRAPHICS, 2007, : 413 - +
  • [34] On the monodromies of a polynomial map from C2 to C
    Michel, F
    Weber, C
    TOPOLOGY, 2001, 40 (06) : 1217 - 1240
  • [35] Jordan tori and polynomial endomorphisms in C2
    Denker, M
    Heinemann, SM
    FUNDAMENTA MATHEMATICAE, 1998, 157 (2-3) : 139 - 159
  • [36] POLYNOMIAL HULLS OF CERTAIN SUBSETS OF C2
    GAMELIN, TW
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 61 (01) : 129 - 142
  • [37] A CLOSING LEMMA FOR POLYNOMIAL AUTOMORPHISMS OF C2
    Dujardin, Romain
    ASTERISQUE, 2020, (415) : 35 - 43
  • [38] CLASS OF SURFACES IN C2 AND THEIR POLYNOMIAL HULLS
    SHACKELL, JR
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 8 (OCT): : 691 - 698
  • [39] Dynamics of symmetric polynomial endomorphisms of C2
    Uchimura, Keisuke
    MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (03) : 483 - 511
  • [40] Dynamics of polynomial skew products on C2
    Jonsson, M
    MATHEMATISCHE ANNALEN, 1999, 314 (03) : 403 - 447