C2 quadratic trigonometric polynomial curves with local bias

被引:16
|
作者
Han, XL [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Peoples R China
关键词
curve representations; trigonometric polynomial; shape parameter; B-spline curve;
D O I
10.1016/j.cam.2004.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quadratic trigonometric polynomial curves with local bias are presented in this paper. The quadratic trigonometric polynomial curves have C-2 continuity with a non-uniform knot vector and any value of the bias, while the quadratic B-spline curves have C-1 continuity. The changes of a local bias parameter will only affect two curve segments. With the bias parameters, the quadratic trigonometric polynomial curves can move locally toward or against a control vertex. A quadratic trigonometric Bezier curve is also introduced as special case of the given trigonometric polynomial curves. © 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:161 / 172
页数:12
相关论文
共 50 条
  • [21] LOCALIZATION OF ROOTS OF A POLYNOMIAL [C2]
    DRIESSEN, HB
    HUNT, EWL
    COMMUNICATIONS OF THE ACM, 1973, 16 (09) : 579 - 579
  • [22] On the commuting polynomial endomorphisms of C2
    Dinh, TC
    ANNALES DE L INSTITUT FOURIER, 2001, 51 (02) : 431 - +
  • [23] ZEROS OF A COMPLEX POLYNOMIAL [C2]
    JENKINS, MA
    TRAUB, JF
    COMMUNICATIONS OF THE ACM, 1972, 15 (02) : 97 - &
  • [24] LOCAL GENERALIZED HERMITE INTERPOLATION BY QUARTIC C2 SPACE-CURVES
    PETERS, J
    ACM TRANSACTIONS ON GRAPHICS, 1989, 8 (03): : 235 - 242
  • [25] Parabolic curves for diffeomorphisms in C2
    Martinez, F. E. Brochero
    Cano, F.
    Lopez-Hernanz, L.
    PUBLICACIONS MATEMATIQUES, 2008, 52 (01) : 189 - 194
  • [26] POTENTIAL ENERGY CURVES FOR C2
    READ, SM
    VANDERSLICE, JT
    JOURNAL OF CHEMICAL PHYSICS, 1962, 36 (09): : 2366 - +
  • [27] Shape preserving curves using quadratic trigonometric splines
    Sarfraz, Muhammad
    Hussain, Malik Zawwar
    Hussain, Farsia
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 : 1126 - 1144
  • [28] Shape analysis of quadratic trigonometric bézier curves
    Wu, Xiaoqin
    Chen, Fulai
    Zhu, Xiuyun
    Journal of Information and Computational Science, 2012, 9 (04): : 821 - 829
  • [29] Uniform trigonometric polynomial B-spline curves
    Yonggang Lü
    Guozhao Wang
    Xunnian Yang
    Science in China Series F Information Sciences, 2002, 45 : 335 - 343
  • [30] Cubic trigonometric polynomial curves and surfaces with a shape parameter
    2016, Institute of Computing Technology (28):