C2 quadratic trigonometric polynomial curves with local bias

被引:16
|
作者
Han, XL [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Peoples R China
关键词
curve representations; trigonometric polynomial; shape parameter; B-spline curve;
D O I
10.1016/j.cam.2004.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quadratic trigonometric polynomial curves with local bias are presented in this paper. The quadratic trigonometric polynomial curves have C-2 continuity with a non-uniform knot vector and any value of the bias, while the quadratic B-spline curves have C-1 continuity. The changes of a local bias parameter will only affect two curve segments. With the bias parameters, the quadratic trigonometric polynomial curves can move locally toward or against a control vertex. A quadratic trigonometric Bezier curve is also introduced as special case of the given trigonometric polynomial curves. © 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:161 / 172
页数:12
相关论文
共 50 条
  • [41] Nondensity of stability for polynomial automorphisms of C2
    Buzzard, GT
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1999, 48 (03) : 857 - 865
  • [42] POLYNOMIAL HULL OF A SPHERE IMBEDDED IN C2
    SHCHERBINA, NV
    MATHEMATICAL NOTES, 1991, 49 (1-2) : 89 - 93
  • [43] On the Fatou component of polynomial maps on C2
    Suzuki, M
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 1071 - 1078
  • [44] On the dynamics of nondegenerate polynomial endomorphisms of C2
    Peng, G
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 237 (02) : 609 - 621
  • [45] ON THE POLYNOMIAL HULL OF A 2-SPHERE IN C2
    SHCHERBINA, NV
    DOKLADY AKADEMII NAUK SSSR, 1991, 317 (06): : 1315 - 1319
  • [46] LOCAL POLYNOMIAL AND PENALIZED TRIGONOMETRIC SERIES REGRESSION
    Huang, Li-Shan
    Chan, Kung-Sik
    STATISTICA SINICA, 2014, 24 (03) : 1215 - 1238
  • [47] On a constructive representation of an orthogonal trigonometric Schauder basis for C2π
    Prestin, J
    Selig, KK
    PROBLEMS AND METHODS IN MATHEMATICAL PHYSICS: THE SIEGFRIED PROSSDORF MEMORIAL VOLUME, 2001, 121 : 402 - 425
  • [48] THE PROJECTIVE HULL OF CERTAIN CURVES IN C2
    Harvey, Reese
    Lawson, Blaine
    Wermer, John
    ASTERISQUE, 2008, (322) : 241 - 254
  • [49] Computing knots by quadratic and cubic polynomial curves
    Fan Zhang
    Jinjiang Li
    Peiqiang Liu
    Hui Fan
    Computational Visual Media, 2020, 6 : 417 - 430
  • [50] Hermite interpolation on algebraic curves in C2
    Phung Van Manh
    Nguyen Van Minh
    Phan Thi Huong
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (05): : 874 - 890