Uniform trigonometric polynomial B-spline curves

被引:21
|
作者
Lü, YG [1 ]
Wang, GZ [1 ]
Yang, XN [1 ]
机构
[1] Zhejiang Univ, Dept Math, Inst Comp Graph & Image Proc, Hangzhou 310027, Peoples R China
来源
SCIENCE IN CHINA SERIES F | 2002年 / 45卷 / 05期
关键词
C-curves; uniform B-splines; C-B-splines; trigonometric polynomial B-splines;
D O I
10.1007/BF02714091
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new kind of uniform spline curve, named trigonometric polynomial B-splines, over space Omega = span{sint, cost, t(k-3), t(k-4),..., t, 1} of which k is an arbitrary integer larger than or equal to 3. We show that trigonometric polynomial B-spline curves have many similar properties to traditional B-splines. Based on the explicit representation of the curve we have also presented the subdivision formulae for this new kind of curve. Since the new spline can include both polynomial curves and trigonometric curves as special cases without rational form, it can be used as an efficient new model for geometric design in the fields of CAD/CAM.
引用
收藏
页码:335 / 343
页数:9
相关论文
共 50 条
  • [1] Uniform trigonometric polynomial B-spline curves
    Yonggang Lü
    Guozhao Wang
    Xunnian Yang
    [J]. Science in China Series F Information Sciences, 2002, 45 : 335 - 343
  • [2] Uniform trigonometric polynomial B-spline curves
    吕勇刚
    汪国昭
    杨勋年
    [J]. Science China(Information Sciences), 2002, (05) : 335 - 343
  • [3] Approximating uniform rational B-spline curves by polynomial B-spline curves
    Xu Huixia
    Hu Qianqian
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 244 : 10 - 18
  • [4] Uniform hyperbolic polynomial B-spline curves
    Lü, YG
    Wang, GZ
    Yang, XN
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (06) : 379 - 393
  • [5] PIECEWISE QUARTIC TRIGONOMETRIC POLYNOMIAL B-SPLINE CURVES WITH TWO SHAPE PARAMETERS
    Dube, Mridula
    Sharma, Reenu
    [J]. INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2012, 12 (04)
  • [6] Trigonometric polynomial B-spline with shape parameter
    Wang, WT
    Wang, GZ
    [J]. PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2004, 14 (11) : 1023 - 1026
  • [7] Trigonometric polynomial B-spline with shape parameter
    WANG Wentao* and WANG Guozhao(Institute of Computer Graphics and Image
    [J]. Progress in Natural Science:Materials International, 2004, (11) : 87 - 90
  • [8] Hyperbolic polynomial uniform B-spline curves and surfaces with shape parameter
    Liu Xumin
    Xu Weixiang
    Guan Yong
    Shang Yuanyuan
    [J]. GRAPHICAL MODELS, 2010, 72 : 1 - 6
  • [9] A New Class of Trigonometric B-Spline Curves
    Albrecht, Gudrun
    Mainar, Esmeralda
    Pena, Juan Manuel
    Rubio, Beatriz
    [J]. SYMMETRY-BASEL, 2023, 15 (08):