Multimodal screening for dyslexia using anatomical and functional MRI data

被引:3
|
作者
Harismithaa, L. R. [1 ]
Sadasivam, G. Sudha [1 ]
机构
[1] PSG Coll Technol, Dept Comp Sci & Engn, Coimbatore, Tamil Nadu, India
关键词
Convolutional neural networks; dyslexia; long-short term memory; multimodal fusion; time distributed; fMRI;
D O I
10.3233/JCM-225999
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dyslexia is a disability in language and phonetics, with difficulties in learning and reasoning, affecting around 20% of the worldwide population. Detecting dyslexia at an early stage is vital to provide appropriate remedial teaching aid to improve the learning skills of the affected. The key objective of this study is to identify dyslexia based on Anatomical and Functional MRI data. Convolutional Neural Networks and Time Distributed Convolutional Long-Short Term Memory Neural networks are proposed for screening the neuroimaging data. A multimodal fusion technique is proposed to provide a final combined classification based on the anatomical and functional data. Experimental results demonstrate the performance of the multimodal approach over individual modes of MRI data. The result analysis shows that image segmentation has a significant contribution towards improving classifier performance.
引用
收藏
页码:1105 / 1116
页数:12
相关论文
共 50 条
  • [1] Connectivity of anatomical and functional MRI data
    Worsley, KJ
    Charil, A
    Lerch, J
    Evans, AC
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 1534 - 1536
  • [2] Decoding gender dimorphism of the human brain using multimodal anatomical and diffusion MRI data
    Feis, Delia-Lisa
    Brodersen, Kay H.
    von Cramon, D. Yves
    Luders, Eileen
    Tittgemeyer, Marc
    NEUROIMAGE, 2013, 70 : 250 - 257
  • [3] MULTIMODAL CLASSIFICATION OF DEMENTIA USING FUNCTIONAL DATA, ANATOMICAL FEATURES AND 3D INVARIANT SHAPE DESCRIPTORS
    Mikhno, Arthur
    Nuevo, Pablo Martinez
    Devanand, Davangere P.
    Parsey, Ramin V.
    Laine, Andrew F.
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 606 - 609
  • [4] Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model
    Studholme, C
    Constable, RT
    Duncan, JS
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2000, 19 (11) : 1115 - 1127
  • [5] Using functional MRI to assess the effects of a morpheme-based training in dyslexia
    Gebauer, D.
    Fink, A.
    Kargl, R.
    Reishofer, G.
    Koschutnig, K.
    Fazekas, F.
    Enzinger, C.
    JOURNAL OF NEUROLOGY, 2011, 258 : 232 - 232
  • [6] MultiViT: Multimodal Vision Transformer for Schizophrenia Prediction using Structural MRI and Functional Network Connectivity Data
    Bi, Yuda
    Abrol, Anees
    Fu, Zening
    Calhoun, Vince
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [7] Cognitive tasks, anatomical MRI, and functional MRI data evaluating the construct of self-regulation
    Bissett, Patrick G.
    Eisenberg, Ian W.
    Shim, Sunjae
    Rios, Jaime Ali H.
    Jones, Henry M.
    Hagen, McKenzie P.
    Enkavi, A. Zeynep
    Li, Jamie K.
    Mumford, Jeanette A.
    MacKinnon, David P.
    Marsch, Lisa A.
    Poldrack, Russell A.
    SCIENTIFIC DATA, 2024, 11 (01)
  • [8] The anatomical basis of genetic dystonia: a multimodal MRI study
    Basaia, S.
    Agosta, F.
    Tomic, A.
    Sarasso, E.
    Dragasevic, N.
    Svetel, M.
    Copetti, M.
    Kostic, V. S.
    Filippi, M.
    EUROPEAN JOURNAL OF NEUROLOGY, 2016, 23 : 188 - 188
  • [9] The anatomical basis of genetic dystonia: A multimodal MRI study
    Sarasso, E.
    Agosta, F.
    Tomic, A.
    Basaia, S.
    Dragasevic, N.
    Svetel, M.
    Copetti, M.
    Kostic, V. S.
    Filippi, M.
    MOVEMENT DISORDERS, 2016, 31 : S550 - S550
  • [10] The Anatomical Basis of Genetic Dystonia: A Multimodal MRI Study
    Sarasso, Elisabetta
    Agosta, Federica
    Tomic, Alexandra
    Basaia, Silvia
    Dragasevic, Natasa
    Svetel, Marina
    Copetti, Massimiliano
    Kostic, Vladimir
    Filippi, Massimo
    NEUROLOGY, 2016, 86