Cognitive tasks, anatomical MRI, and functional MRI data evaluating the construct of self-regulation

被引:2
|
作者
Bissett, Patrick G. [1 ]
Eisenberg, Ian W. [2 ]
Shim, Sunjae [1 ]
Rios, Jaime Ali H. [1 ]
Jones, Henry M. [3 ]
Hagen, McKenzie P. [4 ]
Enkavi, A. Zeynep [5 ]
Li, Jamie K. [1 ]
Mumford, Jeanette A. [1 ]
MacKinnon, David P. [6 ]
Marsch, Lisa A. [7 ]
Poldrack, Russell A. [1 ]
机构
[1] Stanford Univ, Dept Psychol, Stanford, CA 94305 USA
[2] Credo AI, Credo, CA USA
[3] Univ Chicago, Dept Psychol, Chicago, IL USA
[4] Univ Washington, Dept Psychol, Seattle, WA USA
[5] CALTECH, Div Humanities & Social Sci, Pasadena, CA USA
[6] Arizona State Univ, Dept Psychol, Los Angeles, CA USA
[7] Dartmouth Coll, Ctr Technol & Behav Hlth, Geisel Sch Med, Stanford, CA USA
基金
美国国家卫生研究院;
关键词
VALIDATION; BEHAVIOR; ACT;
D O I
10.1038/s41597-024-03636-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We describe the following shared data from N = 103 healthy adults who completed a broad set of cognitive tasks, surveys, and neuroimaging measurements to examine the construct of self-regulation. The neuroimaging acquisition involved task-based fMRI, resting state fMRI, and structural MRI. Each subject completed the following ten tasks in the scanner across two 90-minute scanning sessions: attention network test (ANT), cued task switching, Columbia card task, dot pattern expectancy (DPX), delay discounting, simple and motor selective stop signal, Stroop, a towers task, and a set of survey questions. The dataset is shared openly through the OpenNeuro project, and the dataset is formatted according to the Brain Imaging Data Structure (BIDS) standard.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Efficiency of functional states' self-regulation in cognitive tasks execution
    Kuznetsova, Alla
    Ragimova, Aisha
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2023, 58 : 239 - 239
  • [2] Connectivity of anatomical and functional MRI data
    Worsley, KJ
    Charil, A
    Lerch, J
    Evans, AC
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 1534 - 1536
  • [3] Fostering self-regulation in training complex cognitive tasks
    Ludo W. van Meeuwen
    Saskia Brand-Gruwel
    Paul A. Kirschner
    Jeano J. P. R. de Bock
    Jeroen J. G. van Merriënboer
    Educational Technology Research and Development, 2018, 66 : 53 - 73
  • [4] Fostering self-regulation in training complex cognitive tasks
    van Meeuwen, Ludo W.
    Brand-Gruwel, Saskia
    Kirschner, Paul A.
    de Bock, Jeano J. P. R.
    van Merrienboer, Jeroen J. G.
    ETR&D-EDUCATIONAL TECHNOLOGY RESEARCH AND DEVELOPMENT, 2018, 66 (01): : 53 - 73
  • [5] Altered amygdala functional connectivity after real-time functional MRI emotion self-regulation training
    Gao, Hui
    Zhang, Huan
    Wang, Linyuan
    Zhang, Chi
    Feng, Zhiyuan
    Li, Zhonglin
    Tong, Li
    Yan, Bin
    Hu, Guoen
    NEUROREPORT, 2023, 34 (11) : 537 - 545
  • [6] Multimodal screening for dyslexia using anatomical and functional MRI data
    Harismithaa, L. R.
    Sadasivam, G. Sudha
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2022, 22 (04) : 1105 - 1116
  • [7] EXPLORING INTELLIGENCE WITH ELEMENTARY COGNITIVE TASKS, BEHAVIOR GENETICS, AND FUNCTIONAL MRI
    THOMPSON, LA
    KLEIN, SK
    PETRILL, SA
    DETTERMAN, DK
    LUO, D
    WU, D
    MILLER, D
    LEWIN, J
    BEHAVIOR GENETICS, 1995, 25 (03) : 290 - 291
  • [8] Classification of cognitive states using functional MRI data
    Yang, Ye
    Pal, Ranadip
    O'Boyle, Michael
    MEDICAL IMAGING 2010: IMAGE PROCESSING, 2010, 7623
  • [9] Strength in cognitive self-regulation
    Barutchu, Ayla
    Carter, Olivia
    Hester, Robert
    Levy, Neil
    FRONTIERS IN PSYCHOLOGY, 2013, 4
  • [10] THE ART OF COGNITIVE SELF-REGULATION
    GAURON, EF
    CLINICS IN SPORTS MEDICINE, 1986, 5 (01) : 91 - 101