Multimodal screening for dyslexia using anatomical and functional MRI data

被引:3
|
作者
Harismithaa, L. R. [1 ]
Sadasivam, G. Sudha [1 ]
机构
[1] PSG Coll Technol, Dept Comp Sci & Engn, Coimbatore, Tamil Nadu, India
关键词
Convolutional neural networks; dyslexia; long-short term memory; multimodal fusion; time distributed; fMRI;
D O I
10.3233/JCM-225999
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dyslexia is a disability in language and phonetics, with difficulties in learning and reasoning, affecting around 20% of the worldwide population. Detecting dyslexia at an early stage is vital to provide appropriate remedial teaching aid to improve the learning skills of the affected. The key objective of this study is to identify dyslexia based on Anatomical and Functional MRI data. Convolutional Neural Networks and Time Distributed Convolutional Long-Short Term Memory Neural networks are proposed for screening the neuroimaging data. A multimodal fusion technique is proposed to provide a final combined classification based on the anatomical and functional data. Experimental results demonstrate the performance of the multimodal approach over individual modes of MRI data. The result analysis shows that image segmentation has a significant contribution towards improving classifier performance.
引用
收藏
页码:1105 / 1116
页数:12
相关论文
共 50 条
  • [41] Dyslexia: the possible benefit of multimodal integration of fMRI- and EEG-data
    C. Grünling
    M. Ligges
    R. Huonker
    M. Klingert
    H.-J. Mentzel
    R. Rzanny
    W. A. Kaiser
    H. Witte
    B. Blanz
    Journal of Neural Transmission, 2004, 111 : 951 - 969
  • [42] Dyslexia:: the possible benefit of multimodal integration of fMRI- and EEG-data
    Grünling, C
    Ligges, M
    Huonker, R
    Klingert, M
    Mentzel, HJ
    Rzanny, R
    Kaiser, WA
    Witte, H
    Blanz, B
    JOURNAL OF NEURAL TRANSMISSION, 2004, 111 (07) : 951 - 969
  • [43] Screening for Dyslexia Using Eye Tracking during Reading
    Benfatto, Mattias Nilsson
    Seimyr, Gustaf Oqvist
    Ygge, Jan
    Pansell, Tony
    Rydberg, Agneta
    Jacobson, Christer
    PLOS ONE, 2016, 11 (12):
  • [44] Multimodal MRI data fusion reveals distinct structural, functional and neurochemical correlates of heavy cannabis use
    Hirjak, Dusan
    Schmitgen, Mike M.
    Werler, Florian
    Wittemann, Miriam
    Kubera, Katharina M.
    Wolf, Nadine D.
    Sambataro, Fabio
    Calhoun, Vince D.
    Reith, Wolfgang
    Wolf, Robert Christian
    ADDICTION BIOLOGY, 2022, 27 (02)
  • [45] Image Restoration Using Functional and Anatomical Information Fusion with Application to SPECT-MRI Images
    Benameur, S.
    Mignotte, M.
    Meunier, J.
    Soucy, J. -P.
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2009, 2009
  • [46] Multimodal Machine Learning Model For MCI Detection Using EEG, MRI and VR Data
    Kallel, Mariem
    Park, Bogyeom
    Seo, Kyoungwon
    Kim, Seong-Eun
    2024 INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS, AND COMMUNICATIONS, ITC-CSCC 2024, 2024,
  • [47] Correspondence of human visual areas identified using functional and anatomical MRI in vivo at 7 T
    Sanchez-Panchuelo, Rosa M.
    Francis, Susan T.
    Schluppeck, Denis
    Bowtell, Richard W.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2012, 35 (02) : 287 - 299
  • [48] Anatomical, functional and metabolic imaging of radiation-induced lung injury using hyperpolarized MRI
    Santyr, Giles
    Fox, Matthew
    Thind, Kundan
    Hegarty, Elaine
    Ouriadov, Alexei
    Jensen, Michael
    Scholl, Timothy J.
    Van Dyk, Jacob
    Wong, Eugene
    NMR IN BIOMEDICINE, 2014, 27 (12) : 1515 - 1524
  • [49] Image restoration using functional and anatomical information fusion with application to SPECT-MRI images
    Department of Computer Science and Operations Research , University of Montreal, Station Centre-Ville, CP 6128l, Montréal, QC H3C 3J7, Canada
    不详
    Int. J. Biomed. Imaging,
  • [50] Correlations between functional data using microperimetry and anatomical parameters in high myopia
    Zapata, Miguel A.
    Zaben, Ahmad
    Garcia-Arumi, Jose
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)