Multimodal screening for dyslexia using anatomical and functional MRI data

被引:3
|
作者
Harismithaa, L. R. [1 ]
Sadasivam, G. Sudha [1 ]
机构
[1] PSG Coll Technol, Dept Comp Sci & Engn, Coimbatore, Tamil Nadu, India
关键词
Convolutional neural networks; dyslexia; long-short term memory; multimodal fusion; time distributed; fMRI;
D O I
10.3233/JCM-225999
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dyslexia is a disability in language and phonetics, with difficulties in learning and reasoning, affecting around 20% of the worldwide population. Detecting dyslexia at an early stage is vital to provide appropriate remedial teaching aid to improve the learning skills of the affected. The key objective of this study is to identify dyslexia based on Anatomical and Functional MRI data. Convolutional Neural Networks and Time Distributed Convolutional Long-Short Term Memory Neural networks are proposed for screening the neuroimaging data. A multimodal fusion technique is proposed to provide a final combined classification based on the anatomical and functional data. Experimental results demonstrate the performance of the multimodal approach over individual modes of MRI data. The result analysis shows that image segmentation has a significant contribution towards improving classifier performance.
引用
收藏
页码:1105 / 1116
页数:12
相关论文
共 50 条
  • [21] Using Multimodal MRI Data to Classify Patients with First Episode Psychosis
    Brambilla, P.
    Denis, P.
    Umberto, C.
    Cinzia, P.
    Marcella, B.
    Veronica, M.
    Gianluca, R.
    Antonio, L.
    Sarah, T.
    Katia, D.
    Vittorio, M.
    Mirella, R.
    EUROPEAN PSYCHIATRY, 2015, 30
  • [22] Anatomical and functional abnormalities on MRI in kabuki syndrome
    Boisgontier, Jennifer
    Tacchella, Jean Marc
    Lemaitre, Herve
    Lehman, Natacha
    Saitovitch, Ana
    Gatinois, Vincent
    Boursier, Guilaine
    Sanchez, Elodie
    Rechtman, Elza
    Fillon, Ludovic
    Lyonnet, Stanislas
    Kim-Hanh Le Quang Sang
    Baujat, Genevieve
    Rio, Marlene
    Boute, Odile
    Faivre, Laurence
    Schaefer, Elise
    Sanlaville, Damien
    Zilbovicius, Monica
    Grevent, David
    Genevieve, David
    Boddaert, Nathalie
    NEUROIMAGE-CLINICAL, 2019, 21
  • [23] Anatomical and functional MRI studies in primary insomnia
    Riemann, D.
    Spiegelhalder, K.
    Nissen, C.
    Van Elst, L. Tebartz
    Feige, B.
    JOURNAL OF SLEEP RESEARCH, 2008, 17 : 15 - 15
  • [24] Efficient Variational Approach to Multimodal Registration of Anatomical and Functional Intra-Patient Tumorous Brain Data
    Legaz-Aparicio, Alvar-Gines
    Verdu-Monedero, Rafael
    Larrey-Ruiz, Jorge
    Morales-Sanchez, Juan
    Lopez-Mir, Fernando
    Naranjo, Valery
    Bernabeu, Angela
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2017, 27 (06)
  • [25] Fully automated glioma tumour segmentation using anatomical symmetry plane detection in multimodal brain MRI
    Barzegar, Zeynab
    Jamzad, Mansour
    IET COMPUTER VISION, 2021, 15 (07) : 463 - 473
  • [26] Analysis of functional MRI data using mutual information
    Tsai, A
    Fisher, JW
    Wible, C
    Wells, WM
    Kim, J
    Willsky, AS
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI'99, PROCEEDINGS, 1999, 1679 : 473 - 480
  • [27] Classification of cognitive states using functional MRI data
    Yang, Ye
    Pal, Ranadip
    O'Boyle, Michael
    MEDICAL IMAGING 2010: IMAGE PROCESSING, 2010, 7623
  • [28] Anatomical and functional correlation in Susac syndrome: Multimodal imaging assessment
    Azevedo A.G.B.
    Lima L.H.
    Müller L.
    Filho F.R.
    Zett C.
    Maia A.
    Roisman L.
    International Journal of Retina and Vitreous, 3 (1)
  • [29] Multimodal Cortical Parcellation Based on Anatomical and Functional Brain Connectivity
    Wang, Chendi
    Yoldemir, Burak
    Abugharbieh, Rafeef
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 21 - 28
  • [30] Direct Parametric Reconstruction Using Anatomical Regularization for Simultaneous PET/MRI Data
    Loeb, Rebekka
    Navab, Nassir
    Ziegler, Sibylle I.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (11) : 2233 - 2247