Multimodal screening for dyslexia using anatomical and functional MRI data

被引:3
|
作者
Harismithaa, L. R. [1 ]
Sadasivam, G. Sudha [1 ]
机构
[1] PSG Coll Technol, Dept Comp Sci & Engn, Coimbatore, Tamil Nadu, India
关键词
Convolutional neural networks; dyslexia; long-short term memory; multimodal fusion; time distributed; fMRI;
D O I
10.3233/JCM-225999
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dyslexia is a disability in language and phonetics, with difficulties in learning and reasoning, affecting around 20% of the worldwide population. Detecting dyslexia at an early stage is vital to provide appropriate remedial teaching aid to improve the learning skills of the affected. The key objective of this study is to identify dyslexia based on Anatomical and Functional MRI data. Convolutional Neural Networks and Time Distributed Convolutional Long-Short Term Memory Neural networks are proposed for screening the neuroimaging data. A multimodal fusion technique is proposed to provide a final combined classification based on the anatomical and functional data. Experimental results demonstrate the performance of the multimodal approach over individual modes of MRI data. The result analysis shows that image segmentation has a significant contribution towards improving classifier performance.
引用
收藏
页码:1105 / 1116
页数:12
相关论文
共 50 条
  • [31] Functional and morphological correlates of developmental dyslexia: A multimodal investigation of the ventral occipitotemporal cortex
    Borghesani, Valentina
    Wang, Cheng
    Watson, Christa
    Bouhali, Florence
    Caverzasi, Eduardo
    Battistella, Giovanni
    Bogley, Rian
    Yabut, Nicole A.
    Deleon, Jessica
    Miller, Zachary A.
    Hoeft, Fumiko
    Mandelli, Maria Luisa
    Gorno-Tempini, Maria Luisa
    JOURNAL OF NEUROIMAGING, 2021, 31 (05) : 962 - 972
  • [32] Brain age prediction across the human lifespan using multimodal MRI data
    Guan, Sihai
    Jiang, Runzhou
    Meng, Chun
    Biswal, Bharat
    GEROSCIENCE, 2024, 46 (01) : 1 - 20
  • [33] Brain age prediction across the human lifespan using multimodal MRI data
    Sihai Guan
    Runzhou Jiang
    Chun Meng
    Bharat Biswal
    GeroScience, 2024, 46 : 1 - 20
  • [34] Incorporation of anatomical MRI knowledge for enhanced mapping of brain metabolism using functional PET
    Sudarshan, Viswanath P.
    Li, Shenpeng
    Jamadar, Sharna D.
    Egan, Gary F.
    Awate, Suyash P.
    Chen, Zhaolin
    NEUROIMAGE, 2021, 233
  • [35] Comparing structural and functional graph theory features in the human brain using multimodal MRI
    Messe, A.
    Marrelec, G.
    Bellec, P.
    Perlbarg, V.
    Doyon, J.
    Pelegrini-Issac, M.
    Benali, H.
    IRBM, 2012, 33 (04) : 243 - 252
  • [36] Visualization of altered neurovascular coupling in chronic stroke patients using multimodal functional MRI
    Blicher, Jakob U.
    Stagg, Charlotte J.
    O'Shea, Jacinta
    Ostergaard, Leif
    MacIntosh, Bradley J.
    Johansen-Berg, Heidi
    Jezzard, Peter
    Donahue, Manus J.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2012, 32 (11): : 2044 - 2054
  • [37] Pulmonary artery sling: Anatomical and functional evaluation by MRI
    Siriornpitak, S
    Reddy, GP
    Schwitter, J
    Higgins, CB
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1997, 21 (05) : 766 - 768
  • [38] Pulmonary artery sling: Anatomical and functional evaluation by MRI
    Department of Radiology, Univ. of California at San Francisco, 505 Parnassus Ave., San Francisco, CA 94143-0628, United States
    J. Comput. Assisted Tomogr., 5 (766-768):
  • [39] Functional MRI of Sentence Comprehension in Children with Dyslexia: Beyond Word Recognition
    Rimrodt, S. L.
    Clements-Stephens, A. M.
    Pugh, K. R.
    Courtney, S. M.
    Gaur, P.
    Pekar, J. J.
    Cutting, L. E.
    CEREBRAL CORTEX, 2009, 19 (02) : 402 - 413
  • [40] Multimodal Analysis of Structural and Functional MRI for Schizophrenia Diagnosis
    Zhuang, Huixiang
    Li, Yao
    Liu, Ruihao
    Wu, Chaowei
    Liu, Manhua
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806