Recursive identification for multivariate autoregressive equation-error systems with autoregressive noise

被引:5
|
作者
Liu, Lijuan [1 ]
Ding, Feng [1 ,2 ,3 ]
Zhu, Quanmin [4 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266042, Peoples R China
[3] King Abdulaziz Univ, Dept Elect & Comp Engn, Jeddah, Saudi Arabia
[4] Univ West England, Dept Engn Design & Math, Bristol, Avon, England
关键词
Recursive identification; multivariate system; maximum likelihood; recursive least squares; PARAMETER-ESTIMATION ALGORITHM; STATE-SPACE SYSTEM; STRATEGY;
D O I
10.1080/00207721.2018.1511873
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the recursive identification problems for a class of multivariate autoregressive equation-error systems with autoregressive noise. By decomposing the system into several regressive identification subsystems, a maximum likelihood recursive generalised least squares identification algorithm is proposed to identify the parameter vectors in each subsystem. In addition, a multivariate recursive generalised least squares algorithm is derived as a comparison. The numerical simulation results indicate that the maximum likelihood recursive generalised least squares algorithm can effectively estimate the parameters of the multivariate autoregressive equation-error autoregressive systems and get more accurate parameter estimates than the multivariate recursive generalised least squares algorithm.
引用
下载
收藏
页码:2763 / 2775
页数:13
相关论文
共 50 条
  • [41] Recursive and Iterative Least Squares Parameter Estimation Algorithms for Multiple-Input–Output-Error Systems with Autoregressive Noise
    Jiling Ding
    Circuits, Systems, and Signal Processing, 2018, 37 : 1884 - 1906
  • [42] Maximum likelihood gradient identification for multivariate equation-error moving average systems using the multi-innovation theory
    Liu, Lijuan
    Ding, Feng
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2019, 33 (07) : 1031 - 1046
  • [43] Two-stage Recursive Least Squares Parameter Estimation Algorithm for Multivariate Output-error Autoregressive Moving Average Systems
    Yunze Guo
    Lijuan Wan
    Ling Xu
    Feng Ding
    Ahmed Alsaedi
    Tasawar Hayat
    International Journal of Control, Automation and Systems, 2019, 17 : 1547 - 1557
  • [44] Decomposition based recursive least squares parameter estimation for input nonlinear equation-error systems
    Chen Huibo
    Fan Jiangbo
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 2161 - 2165
  • [45] Recursive least squares algorithm and stochastic gradient algorithm for feedback nonlinear equation-error systems
    Song, Guanglei
    Xu, Ling
    Ding, Feng
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2019, 32 (3-4) : 251 - 257
  • [46] Identification of autoregressive models in the presence of additive noise
    Diversi, Roberto
    Guidorzi, Roberto
    Soverini, Umberto
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2008, 22 (05) : 465 - 481
  • [47] Hierarchical recursive least squares algorithms for Hammerstein nonlinear autoregressive output-error systems
    Kang, Zhen
    Ji, Yan
    Liu, Ximei
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2021, 35 (11) : 2276 - 2295
  • [49] Maximum likelihood interval-varying recursive least squares identification for output-error autoregressive systems with scarce measurements
    Li, Shutong
    Ji, Yan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (11): : 7230 - 7246
  • [50] Multiscale Autoregressive Identification of Neuroelectrophysiological Systems
    Gilmour, Timothy P.
    Subramanian, Thyagarajan
    Lagoa, Constantino
    Jenkins, W. Kenneth
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2012, 2012