Recursive identification for multivariate autoregressive equation-error systems with autoregressive noise

被引:5
|
作者
Liu, Lijuan [1 ]
Ding, Feng [1 ,2 ,3 ]
Zhu, Quanmin [4 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266042, Peoples R China
[3] King Abdulaziz Univ, Dept Elect & Comp Engn, Jeddah, Saudi Arabia
[4] Univ West England, Dept Engn Design & Math, Bristol, Avon, England
关键词
Recursive identification; multivariate system; maximum likelihood; recursive least squares; PARAMETER-ESTIMATION ALGORITHM; STATE-SPACE SYSTEM; STRATEGY;
D O I
10.1080/00207721.2018.1511873
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the recursive identification problems for a class of multivariate autoregressive equation-error systems with autoregressive noise. By decomposing the system into several regressive identification subsystems, a maximum likelihood recursive generalised least squares identification algorithm is proposed to identify the parameter vectors in each subsystem. In addition, a multivariate recursive generalised least squares algorithm is derived as a comparison. The numerical simulation results indicate that the maximum likelihood recursive generalised least squares algorithm can effectively estimate the parameters of the multivariate autoregressive equation-error autoregressive systems and get more accurate parameter estimates than the multivariate recursive generalised least squares algorithm.
引用
下载
收藏
页码:2763 / 2775
页数:13
相关论文
共 50 条
  • [31] On Noncausal Identification of Nonstationary Multivariate Autoregressive Processes
    Niedzwiecki, Maciej
    Ciolek, Marcin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (03) : 769 - 782
  • [32] Bayesian Identification of Seasonal Multivariate Autoregressive Processes
    Shaarawy, Samir M.
    Ali, Sherif S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (04) : 823 - 836
  • [33] Identification of autoregressive dynamic systems
    Vasil'ev, VA
    AUTOMATION AND REMOTE CONTROL, 1997, 58 (12) : 1929 - 1939
  • [34] Cepstral identification of autoregressive systems
    Lauwers, Oliver
    Vermeersch, Christof
    De Moor, Bart
    AUTOMATICA, 2022, 139
  • [35] Iterative Identification Algorithms for Input Nonlinear Output Error Autoregressive Systems
    Ma, Junxia
    Xiong, Weili
    Ding, Feng
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2016, 14 (01) : 140 - 147
  • [36] Iterative identification algorithms for input nonlinear output error autoregressive systems
    Junxia Ma
    Weili Xiong
    Feng Ding
    International Journal of Control, Automation and Systems, 2016, 14 : 140 - 147
  • [37] COMPLETE MODELING OF MULTIDIMENSIONAL NOISE AS A MULTIVARIATE AUTOREGRESSIVE PROCESS
    MORISHIMA, N
    ANNALS OF NUCLEAR ENERGY, 1991, 18 (12) : 697 - 704
  • [38] Identification of Autoregressive Systems in Noise Based on a Ramp-Cepstrum Model
    Fattah, S. A.
    Zhu, W. -P.
    Ahmad, M. O.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2008, 55 (10) : 1051 - 1055
  • [39] Three-stage recursive least squares parameter estimation for controlled autoregressive autoregressive systems
    Wang, Shijun
    Ding, Rui
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (12-13) : 7489 - 7497
  • [40] Two-stage Recursive Least Squares Parameter Estimation Algorithm for Multivariate Output-error Autoregressive Moving Average Systems
    Guo, Yunze
    Wan, Lijuan
    Xu, Ling
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2019, 17 (06) : 1547 - 1557