Recursive identification for multivariate autoregressive equation-error systems with autoregressive noise

被引:5
|
作者
Liu, Lijuan [1 ]
Ding, Feng [1 ,2 ,3 ]
Zhu, Quanmin [4 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266042, Peoples R China
[3] King Abdulaziz Univ, Dept Elect & Comp Engn, Jeddah, Saudi Arabia
[4] Univ West England, Dept Engn Design & Math, Bristol, Avon, England
关键词
Recursive identification; multivariate system; maximum likelihood; recursive least squares; PARAMETER-ESTIMATION ALGORITHM; STATE-SPACE SYSTEM; STRATEGY;
D O I
10.1080/00207721.2018.1511873
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the recursive identification problems for a class of multivariate autoregressive equation-error systems with autoregressive noise. By decomposing the system into several regressive identification subsystems, a maximum likelihood recursive generalised least squares identification algorithm is proposed to identify the parameter vectors in each subsystem. In addition, a multivariate recursive generalised least squares algorithm is derived as a comparison. The numerical simulation results indicate that the maximum likelihood recursive generalised least squares algorithm can effectively estimate the parameters of the multivariate autoregressive equation-error autoregressive systems and get more accurate parameter estimates than the multivariate recursive generalised least squares algorithm.
引用
下载
收藏
页码:2763 / 2775
页数:13
相关论文
共 50 条
  • [1] Maximum Likelihood Recursive Identification for the Multivariate Equation-Error Autoregressive Moving Average Systems Using the Data Filtering
    Liu, Lijuan
    Ding, Feng
    Xu, Ling
    Pan, Jian
    Alsaedi, Ahmed
    Hayat, Tasawar
    IEEE ACCESS, 2019, 7 : 41154 - 41163
  • [2] A new multivariate equation-error autoregressive moving average system with conditional heteroscedastic noise: Maximum likelihood identification
    Hakimdavoodi, Hamidreza
    Amirmazlaghani, Maryam
    Amindavar, Hamidreza
    DIGITAL SIGNAL PROCESSING, 2021, 118
  • [3] Gradient-based iterative identification method for multivariate equation-error autoregressive moving average systems using the decomposition technique
    Ge, Zhengwei
    Ding, Feng
    Xu, Ling
    Alsaedi, Ahmed
    Hayat, Tasawar
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (03): : 1658 - 1676
  • [4] A New Iterative Least Squares Parameter Estimation Approach for Equation-error Autoregressive Systems
    Lijuan Wan
    Feng Ding
    Ximei Liu
    Chunping Chen
    International Journal of Control, Automation and Systems, 2020, 18 : 780 - 790
  • [5] Filtered generalized iterative parameter identification for equation-error autoregressive models based on the filtering identification idea
    Ding, Feng
    Shao, Xingling
    Xu, Ling
    Zhang, Xiao
    Xu, Huan
    Zhou, Yihong
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2024, 38 (04) : 1363 - 1385
  • [6] A New Iterative Least Squares Parameter Estimation Approach for Equation-error Autoregressive Systems
    Wan, Lijuan
    Ding, Feng
    Liu, Ximei
    Chen, Chunping
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2020, 18 (03) : 780 - 790
  • [7] Decomposition-Based Gradient Estimation Algorithms for Multivariate Equation-Error Autoregressive Systems Using the Multi-innovation Theory
    Ping Ma
    Feng Ding
    Ahmed Alsaedi
    Tasawar Hayat
    Circuits, Systems, and Signal Processing, 2018, 37 : 1846 - 1862
  • [8] Multi-innovation gradient estimation algorithms for multivariate equation-error autoregressive moving average systems based on the filtering technique
    Ma, Ping
    Ding, Feng
    Hayat, Tasawar
    IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (13): : 2086 - 2094
  • [9] Decomposition-Based Gradient Estimation Algorithms for Multivariate Equation-Error Autoregressive Systems Using the Multi-innovation Theory
    Ma, Ping
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (05) : 1846 - 1862
  • [10] Filtering Based Multi-innovation Stochastic Gradient Identification Algorithm for Multivariable Nonlinear Equation-Error Autoregressive Systems
    Mao, Yawen
    Liu, Yanjun
    Ding, Feng
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 3027 - 3032